344 DIFFERENTIAL CALCULUSHence∂z
∂y= 4 x^3 y− 3.Problem 2. Giveny=4 sin 3xcos 2t, find∂y
∂x
and∂y
∂t.To find
∂y
∂x,tis kept constantHence∂y
∂x=(4 cos 2t)d
dx(sin 3x)=(4 cos 2t)(3 cos 3x)i.e.∂y
∂x=12 cos 3xcos 2tTo find
∂y
∂t,xis kept constant.Hence∂y
∂t=(4 sin 3x)d
dt(cos 2t)=(4 sin 3x)(−2 sin 2t)i.e.∂y
∂t=−8 sin 3xsin 2tProblem 3. Ifz=sinxyshow that1
y∂z
∂x=1
x∂z
∂y∂z
∂x=ycosxy, sinceyis kept constant.∂z
∂y=xcosxy, sincexis kept constant.1
y∂z
∂x=(
1
y)
(ycosxy)=cosxyand1
x∂z
∂y=(
1
x)
(xcosxy)=cosxy.Hence1
y∂z
∂x=1
x∂z
∂yProblem 4. Determine∂z
∂xand∂z
∂ywhenz=1
√
(x^2 +y^2 ).z=1
√
(x^2 +y^2 )=(x^2 +y^2 )− 1
2∂z
∂x=−1
2(x^2 +y^2 )− 3(^2) (2x), by the function of a
function rule (keepingyconstant)
−x
(x^2 +y^2 )
3
2
−x
√
(x^2 +y^2 )^3
∂z
∂y
=−
1
2
(x^2 +y^2 )
− 3
(^2) (2y), (keepingxconstant)
−y
√
(x^2 +y^2 )^3
Problem 5. Pressurepof a mass of gas is given
bypV=mRT, wheremandRare constants,
Vis the volume andTthe temperature. Find
expressions for
∂p
∂T
and
∂p
∂V
SincepV=mRTthenp=
mRT
V
To find
∂p
∂T
,Vis kept constant.
Hence
∂p
∂T
(
mR
V
)
d
dT
(T)=
mR
V
To find
∂p
∂V
,Tis kept constant.
Hence
∂p
∂V
=(mRT)
d
dV
(
1
V
)
=(mRT)(−V−^2 )=
−mRT
V^2
Problem 6. The time of oscillation,t, of a pen-
dulum is given byt= 2 π
√
l
g
wherelis the length
of the pendulum andgthe free fall acceleration
due to gravity. Determine
∂t
∂l
and
∂t
∂g
To find
∂t
∂l
,gis kept constant.