Higher Engineering Mathematics

(Greg DeLong) #1
PARTIAL DIFFERENTIATION 345

G

t= 2 π


l
g

=

(
2 π

g

)√
l=

(
2 π

g

)
l

1
2

Hence


∂t
∂l

=

(
2 π

g

)
d
dl

(l

1

(^2) )=
(
2 π

g
)(
1
2
l
− 1
2
)


(
2 π

g
)(
1
2

l
)


π

lg
To find
∂t
∂g
,lis kept constant
t= 2 π

l
g
=(2π

l)
(
1

g
)
=(2π

l)g
− 1
2
Hence
∂t
∂g
=(2π

l)
(

1
2
g
− 3
2
)
=(2π

l)
(
− 1
2

g^3
)


−π

l

g^3
=−π

l
g^3
Now try the following exercise.
Exercise 139 Further problems on first
order partial derivatives
In Problems 1 to 6, find
∂z
∂x
and
∂z
∂y
1.z= 2 xy
[
∂z
∂x
= 2 y
∂z
∂y
= 2 x
]
2.z=x^3 − 2 xy+y^2



∂z
∂x
= 3 x^2 − 2 y
∂z
∂y
=− 2 x+ 2 y



3.z=
x
y



∂z
∂x


1
y
∂z
∂y


−x
y^2



4.z=sin (4x+ 3 y)



∂z
∂x
=4 cos (4x+ 3 y)
∂z
∂y
=3 cos (4x+ 3 y)



5.z=x^3 y^2 −
y
x^2



  • 1 y ⎡ ⎢ ⎢ ⎣
    ∂z
    ∂x
    = 3 x^2 y^2 +
    2 y
    x^3
    ∂z
    ∂y
    = 2 x^3 y−
    1
    x^2

    1
    y^2




    6.z=cos 3xsin 4y




    ∂z
    ∂x
    =−3 sin 3xsin 4y
    ∂z
    ∂y
    =4 cos 3xcos 4y






  1. The volume of a cone of heighthand base
    radiusris given byV=^13 πr^2 h. Determine
    ∂V
    ∂h


and

∂V
∂r [
∂V
∂h

=

1
3

πr^2

∂V
∂r

=

2
3

πrh

]


  1. The resonant frequencyfrin a series electrical


circuit is given byfr=

1
2 π


LC

. Show that


∂fr
∂L

=

− 1
4 π


CL^3


  1. An equation resulting from plucking a
    string is:


y=sin

(nπ

L

)
x

{
kcos

(
nπb
L

)
t+csin

(
nπb
L

)
t

}

Determine

∂y
∂t

and

∂y
∂x
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
∂y
∂t

=

nπb
L

sin

(nπ

L

)
x

{
ccos

(
nπb
L

)
t

−ksin

(
nπb
L

)
t

}

∂y
∂x

=


L

cos

(nπ

L

)
x

{
kcos

(
nπb
L

)
t

+csin

(
nπb
L

)
t

}

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. In a thermodynamic system,k=Ae


TS−H
RT ,
whereR,kandAare constants.

Find (a)

∂k
∂T

(b)

∂A
∂T

(c)

∂(S)
∂T

(d)

∂(H)
∂T
Free download pdf