350 DIFFERENTIAL CALCULUSThus dT=
V
kdp+p
kdV and substitutingk=pV
Tgives:dT=V
(
pV
T)dp+p
(
pV
T)dVi.e. dT=T
pdp+T
VdVNow try the following exercise.Exercise 141 Further problems on the total
differentialIn Problems 1 to 5, find the total differential dz.- z=x^3 +y^2 [3x^2 dx+ 2 ydy]
- z= 2 xy−cosx [(2y+sinx)dx+ 2 xdy]
- z=
x−y
x+y[
2 y
(x+y)^2dx−2 x
(x+y)^2dy]- z=xlny
[
lnydx+x
ydy]- z=xy+
√
x
y− 4
[(
y+1
2 y√
x)
dx+(
x−√
x
y^2)
dy]- If z=f(a,b,c) and z= 2 ab− 3 b^2 c+abc,
find the total differential, dz.
[
b(2+c)da+(2a− 6 bc+ac)db
+b(a− 3 b)dc
]- Givenu=ln sin (xy) show that
du=cot (xy)(ydx+xdy)
35.2 Rates of change
Sometimes it is necessary to solve problems in which
different quantities have different rates of change.From equation (1), the rate of change ofz,dz
dtis
given by:dz
dt=∂z
∂udu
dt+∂z
∂vdv
dt+∂z
∂wdw
dt+··· (2)Problem 4. Ifz=f(x,y) andz= 2 x^3 sin 2yfind
the rate of change ofz, correct to 4 significant
figures, whenxis 2 units andyisπ/6 radians
and whenxis increasing at 4 units/s andyis
decreasing at 0.5 units/s.Using equation (2), the rate of change ofz,dz
dt=∂z
∂xdx
dt+∂z
∂ydy
dtSincez= 2 x^3 sin 2y, then∂z
∂x= 6 x^2 sin 2yand∂z
∂y= 4 x^3 cos 2ySincexis increasing at 4 units/s,dx
dt=+ 4and sinceyis decreasing at 0.5 units/s,dy
dt=− 0. 5Hencedz
dt=(6x^2 sin 2y)(+4)+(4x^3 cos 2y)(− 0 .5)= 24 x^2 sin 2y− 2 x^3 cos 2yWhenx=2 units andy=π
6radians, then
dz
dt=24(2)^2 sin [2(π/6)]−2(2)^3 cos [2(π/6)]= 83. 138 − 8. 0Hence the rate of change ofz,dz
dt=75.14 units/s,
correct to 4 significant figures.Problem 5. The height of a right circular cone
is increasing at 3 mm/s and its radius is decreas-
ing at 2 mm/s. Determine, correct to 3 significant
figures, the rate at which the volume is chang-
ing (in cm^3 /s) when the height is 3.2 cm and the
radius is 1.5 cm.Volume of a right circular cone,V=1
3πr^2 h
Using equation (2), the rate of change of volume,dV
dt=∂V
∂rdr
dt+∂V
∂hdh
dt∂V
∂r=2
3πrhand∂V
∂h=1
3πr^2