370 INTEGRAL CALCULUS
(a) From Table 37.1(iv),
∫
7 sec^24 tdt=(7)
(
1
4
)
tan 4t+c
=
7
4
tan 4t+c
(b) From Table 37.1(v),
3
∫
cosec^22 θdθ=(3)
(
−
1
2
)
cot 2θ+c
=−
3
2
cot 2θ+c
Problem 10. Determine
(a)
∫
5e^3 xdx (b)
∫
2
3e^4 t
dt.
(a) From Table 37.1(viii),
∫
5e^3 xdx=(5)
(
1
3
)
e^3 x+c=
5
3
e^3 x+c
(b)
∫
2
3e^4 t
dt=
∫
2
3
e−^4 tdt=
(
2
3
)(
−
1
4
)
e−^4 t+c
=−
1
6
e−^4 t+c=−
1
6e^4 t
+c
Problem 11. Determine
(a)
∫
3
5 x
dx (b)
∫(
2 m^2 + 1
m
)
dm.
(a)
∫
3
5 x
dx=
∫(
3
5
)(
1
x
)
dx=
3
5
lnx+c
(from Table 37.1(ix))
(b)
∫(
2 m^2 + 1
m
)
dm=
∫(
2 m^2
m
+
1
m
)
dm
=
∫(
2 m+
1
m
)
dm
=
2 m^2
2
+lnm+c
=m^2 +lnm+c
Now try the following exercise.
Exercise 146 Further problems on standard
integrals
In Problems 1 to 12, determine the indefinite
integrals.
- (a)
∫
4dx (b)
∫
7 xdx
[
(a) 4x+c (b)
7 x^2
2
+c
]
- (a)
∫
2
5
x^2 dx (b)
∫
5
6
x^3 dx
[
(a)
2
15
x^3 +c (b)
5
24
x^4 +c
]
- (a)
∫(
3 x^2 − 5 x
x
)
dx (b)
∫
(2+θ)^2 dθ
⎡
⎢
⎢
⎣
(a)
3 x^2
2
− 5 x+c
(b) 4θ+ 2 θ^2 +
θ^3
3
+c
⎤
⎥
⎥
⎦
- (a)
∫
4
3 x^2
dx (b)
∫
3
4 x^4
dx
[
(a)
− 4
3 x
+c (b)
− 1
4 x^3
+c
]
- (a) 2
∫√
x^3 dx (b)
∫
1
4
√ 4
x^5 dx
[
(a)
4
5
√
x^5 +c (b)
1
9
√ 4
x^9 +c
]
- (a)
∫
− 5
√
t^3
dt (b)
∫
3
7
√ 5
x^4
dx
[
(a)
10
√
t
+c (b)
15
7
√ (^5) x+c
]
- (a)
∫
3 cos 2xdx (b)
∫
7 sin 3θdθ
⎡
⎢
⎢
⎣
(a)
3
2
sin 2x+c
(b)−
7
3
cos 3θ+c
⎤
⎥
⎥
⎦