STANDARD INTEGRATION 371
H
- (a)
∫
3
4
sec^23 xdx (b)
∫
2 cosec^24 θdθ
[
(a)
1
4
tan 3x+c(b)−
1
2
cot 4θ+c
]
- (a) 5
∫
cot 2tcosec 2tdt
(b)
∫
4
3
sec 4ttan 4tdt
⎡
⎢
⎢
⎣
(a)−
5
2
cosec 2t+c
(b)
1
3
sec 4t+c
⎤
⎥
⎥
⎦
- (a)
∫
3
4
e^2 xdx (b)
2
3
∫
dx
e^5 x
[
(a)
3
8
e^2 x+c (b)
− 2
15 e^5 x
+c
]
- (a)
∫
2
3 x
dx (b)
∫(
u^2 − 1
u
)
du
[
(a)
2
3
lnx+c (b)
u^2
2
−lnu+c
]
- (a)
∫
(2+ 3 x)^2
√
x
dx (b)
∫(
1
t
+ 2 t
) 2
dt
⎡
⎢
⎢
⎣
(a) 8
√
x+ 8
√
x^3 +
18
5
√
x^5 +c
(b)−
1
t
+ 4 t+
4 t^3
3
+c
⎤
⎥
⎥
⎦
37.4 Definite integrals
Integrals containing an arbitrary constantcin their
results are calledindefinite integralssince their
precise value cannot be determined without further
information.Definite integralsare those in which
limits are applied. If an expression is written as [x]ba,
‘b’ is called the upper limit and ‘a’ the lower limit.
The operation of applying the limits is defined as
[x]ba=(b)−(a).
The increase in the value of the integralx^2 asx
increases from 1 to 3 is written as
∫ 3
1 x
(^2) dx.
Applying the limits gives:
∫ 3
1
x^2 dx=
[
x^3
3
+c
] 3
1
(
33
3
+c
)
−
(
13
3
+c
)
=(9+c)−
(
1
3
+c
)
= 8
2
3
Note that the ‘c’ term always cancels out when limits
are applied and it need not be shown with definite
integrals.
Problem 12. Evaluate
(a)
∫ 2
13 xdx (b)
∫ 3
− 2 (4−x
(^2) )dx.
(a)
∫ 2
1
3 xdx=
[
3 x^2
2
] 2
1
{
3
2
(2)^2
}
−
{
3
2
(1)^2
}
= 6 − 1
1
2
= 4
1
2
(b)
∫ 3
− 2
(4−x^2 )dx=
[
4 x−
x^3
3
] 3
− 2
{
4(3)−
(3)^3
3
}
−
{
4(−2)−
(−2)^3
3
}
={ 12 − 9 }−
{
− 8 −
− 8
3
}
={ 3 }−
{
− 5
1
3
}
= 8
1
3
Problem 13. Evaluate
∫ 4
1
(
θ+ 2
√
θ
)
dθ, taking
positive square roots only.
∫ 4
1
(
θ+ 2
√
θ
)
dθ=
∫ 4
1
(
θ
θ
1
2
2
θ
1
2
)
dθ
∫ 4
1
(
θ
1
(^2) + 2 θ
− 1
2
)
dθ
⎡
⎢
⎣
θ
( 1
2
)
- 1
1
2 - 1
2 θ
(− 1
2
)
- 1
−
1
2 - 1
⎤
⎥
⎦
4
1