Higher Engineering Mathematics

(Greg DeLong) #1

372 INTEGRAL CALCULUS


=


⎣θ

3
2
3
2

+

2 θ

1
2
1
2



4

1

=

[
2
3


θ^3 + 4


θ

] 4

1

=

{
2
3


(4)^3 + 4


4

}

{
2
3


(1)^3 + 4


(1)

}

=

{
16
3

+ 8

}

{
2
3

+ 4

}

= 5

1
3

+ 8 −

2
3

− 4 = 8

2
3

Problem 14. Evaluate

∫π
2

0

3 sin 2xdx.

∫π
2

0

3 sin 2xdx

=

[
(3)

(

1
2

)
cos 2x


2

0

=

[

3
2

cos 2x


2

0

=

{

3
2

cos 2


2

)}

{

3
2

cos 2(0)

}

=

{

3
2

cosπ

}

{

3
2

cos 0

}

=

{

3
2

(−1)

}

{

3
2

(1)

}
=

3
2

+

3
2

= 3

Problem 15. Evaluate

∫ 2

1

4 cos 3tdt.

∫ 2


1

4 cos 3tdt=

[
(4)

(
1
3

)
sin 3t

] 2

1

=

[
4
3

sin 3t

] 2

1

=

{
4
3

sin 6

}

{
4
3

sin 3

}

Note that limits of trigonometric functions are always
expressed in radians—thus, for example, sin 6 means
the sine of 6 radians=− 0. 279415 ...


Hence


∫ 2

1

4 cos 3tdt

=

{
4
3

(− 0. 279415 ...)

}

{
4
3

(0. 141120 ...)

}

=(− 0 .37255)−(0.18816)=− 0. 5607

Problem 16. Evaluate

(a)

∫ 2

1

4e^2 xdx (b)

∫ 4

1

3
4 u

du,

each correct to 4 significant figures.

(a)

∫ 2

1

4e^2 xdx=

[
4
2

e^2 x

] 2

1

=2[ e^2 x]^21 =2[ e^4 −e^2 ]

=2[54. 5982 − 7 .3891]= 94. 42

(b)

∫ 4

1

3
4 u

du=

[
3
4

lnu

] 4

1

=

3
4

[ln4−ln 1]

=

3
4

[1. 3863 −0]= 1. 040

Now try the following exercise.

Exercise 147 Further problems on definite
integrals

In problems 1 to 8, evaluate the definite inte-
grals (where necessary, correct to 4 significant
figures).


  1. (a)


∫ 4

1

5 x^2 dx (b)

∫ 1

− 1


3
4

t^2 dt
[
(a) 105 (b)−

1
2

]


  1. (a)


∫ 2

− 1

(3−x^2 )dx (b)

∫ 3

1

(x^2 − 4 x+3) dx

[
(a) 6 (b)− 1

1
3

]


  1. (a)


∫π

0

3
2

cosθdθ (b)

∫ π
2

0

4 cosθdθ

[(a) 0 (b) 4]


  1. (a)


∫π
3
π
6

2 sin 2θdθ (b)

∫ 2

0

3 sintdt

[(a) 1 (b) 4.248]


  1. (a)


∫ 1

0

5 cos 3xdx (b)

∫π
6

0

3 sec^22 xdx

[(a) 0.2352 (b) 2.598]
Free download pdf