SOME APPLICATIONS OF INTEGRATION 381H
Figure 38.12
(b) (i) When the shaded area of Fig. 38.12 is
revolved 360◦about thex-axis, the volume
generated
=∫ 30πy^2 dx=∫ 30π(2x^2 )^2 dx=∫ 304 πx^4 dx= 4 π[
x^5
5] 30= 4 π(
243
5)
=194.4πcubic units(ii) When the shaded area of Fig. 38.12 is
revolved 360◦about they-axis, the volume
generated
=(volume generated byx=3)
−(volume generated byy= 2 x^2 )=∫ 180π(3)^2 dy−∫ 180π(y2)
dy=π∫ 180(
9 −y
2)
dy=π[
9 y−y^2
4] 180
= 81 πcubic units(c) If the co-ordinates of the centroid of the shaded
area in Fig. 38.12 are (x,y) then:
(i) by integration,x=∫ 30xydx
∫ 30ydx=∫ 30x(2x^2 )dx18=∫ 302 x^3 dx18=[
2 x^4
4] 30
18=81
36=2.25y=1
2∫ 30y^2 dx
∫ 30ydx=1
2∫ 30(2x^2 )^2 dx18=1
2∫ 304 x^4 dx18=1
2[
4 x^5
5] 30
18=5.4(ii) using the theorem of Pappus:Volume generated when shaded area is
revolved aboutOY=(area)(2πx).i.e. 81 π=(18)(2πx),from which, x=81 π
36 π=2.25Volume generated when shaded area is
revolved aboutOX=(area)(2πy).
i.e. 194. 4 π=(18)(2πy),from which, y=194. 4 π
36 π=5.4Hence the centroid of the shaded area in
Fig. 38.12 is at (2.25, 5.4).Problem 10. A metal disc has a radius of 5.0 cm
and is of thickness 2.0 cm. A semicircular groove
of diameter 2.0 cm is machined centrally around
the rim to form a pulley. Determine, using Pap-
pus’ theorem, the volume and mass of metal
removed and the volume and mass of the pulley
if the density of the metal is 8000 kg m−^3.A side view of the rim of the disc is shown in
Fig. 38.13.Figure 38.13