394 INTEGRAL CALCULUSIt is possible in this case to change the limits of inte-
gration. Thus whenx=3,u=2(3)^2 + 7 =25 and
whenx=1,u=2(1)^2 + 7 =9.Hence
∫x= 3x= 15 x√
(2x^2 +7) dx=∫u= 25u= 95 x√
udu
4 x=5
4∫ 259√
udu=5
4∫ 259u1(^2) du
Thus the limits have been changed, and it is unneces-
sary to change the integral back in terms ofx.
Thus
∫x= 3
x= 1
5 x
√
(2x^2 +7) dx=
5
4
⎡
⎣u
3
2
3 / 2
⎤
⎦
25
9
5
6
[√
u^3
] 25
9
5
6
[√
253 −
√
93
]
5
6
(125−27)= 81
2
3
Problem 11. Evaluate
∫ 2
0
3 x
√
(2x^2 +1)
dx,
taking positive values of square roots only.
Letu= 2 x^2 +1 then
du
dx
= 4 xand dx=
du
4 x
Hence
∫ 2
0
3 x
√
(2x^2 +1)
dx=
∫x= 2
x= 0
3 x
√
u
du
4 x
3
4
∫x= 2
x= 0
u
− 1
(^2) du
Since u= 2 x^2 +1, when x=2,u=9 and when
x=0,u=1.
Thus
3
4
∫x= 2
x= 0
u
− 1
(^2) du=
3
4
∫u= 9
u= 1
u
− 1
(^2) du,
i.e. the limits have been changed
3
4
⎡
⎢
⎣
u
1
2
1
2
⎤
⎥
⎦
9
1
3
2
[√
9 −
√
1
]
= 3 ,
taking positive values of square roots only.
Now try the following exercise.
Exercise 155 Further problems on integra-
tion using algebraic substitutions
In Problems 1 to 7, integrate with respect to the
variable.
- 2x(2x^2 −3)^5
[
1
12(2x^2 −3)^6 +c]- 5 cos^5 tsint
[
−5
6cos^6 t+c]- 3 sec^23 xtan 3x
[
1
2
sec^23 x+cor1
2tan^23 x+c]- 2t
√
(3t^2 −1)[
2
9√
(3t^2 −1)^3 +c]5.lnθ
θ[
1
2(lnθ)^2 +c]- 3 tan 2t
[
3
2ln ( sec 2t)+c]7.2et
√
(et+4)[
4√
(et+4)+c]In Problems 8 to 10, evaluate the definite inte-
grals correct to 4 significant figures.8.∫ 103 xe(2x(^2) −1)
dx [1.763]
9.
∫ π
2
0
3 sin^4 θcosθdθ [0.6000]
10.
∫ 1
0
3 x
(4x^2 −1)^5
dx [0.09259]