Higher Engineering Mathematics

(Greg DeLong) #1
394 INTEGRAL CALCULUS

It is possible in this case to change the limits of inte-
gration. Thus whenx=3,u=2(3)^2 + 7 =25 and
whenx=1,u=2(1)^2 + 7 =9.

Hence
∫x= 3

x= 1

5 x


(2x^2 +7) dx=

∫u= 25

u= 9

5 x


u

du
4 x

=

5
4

∫ 25

9


udu

=

5
4

∫ 25

9

u

1

(^2) du
Thus the limits have been changed, and it is unneces-
sary to change the integral back in terms ofx.
Thus
∫x= 3
x= 1
5 x

(2x^2 +7) dx=
5
4

⎣u
3
2
3 / 2


25
9


5
6
[√
u^3
] 25
9


5
6
[√
253 −

93
]


5
6
(125−27)= 81
2
3
Problem 11. Evaluate
∫ 2
0
3 x

(2x^2 +1)
dx,
taking positive values of square roots only.
Letu= 2 x^2 +1 then
du
dx
= 4 xand dx=
du
4 x
Hence
∫ 2
0
3 x

(2x^2 +1)
dx=
∫x= 2
x= 0
3 x

u
du
4 x


3
4
∫x= 2
x= 0
u
− 1
(^2) du
Since u= 2 x^2 +1, when x=2,u=9 and when
x=0,u=1.
Thus
3
4
∫x= 2
x= 0
u
− 1
(^2) du=
3
4
∫u= 9
u= 1
u
− 1
(^2) du,
i.e. the limits have been changed


3
4



u
1
2
1
2



9
1


3
2
[√
9 −

1
]
= 3 ,
taking positive values of square roots only.
Now try the following exercise.
Exercise 155 Further problems on integra-
tion using algebraic substitutions
In Problems 1 to 7, integrate with respect to the
variable.



  1. 2x(2x^2 −3)^5


[
1
12

(2x^2 −3)^6 +c

]


  1. 5 cos^5 tsint


[

5
6

cos^6 t+c

]


  1. 3 sec^23 xtan 3x
    [
    1
    2


sec^23 x+cor

1
2

tan^23 x+c

]


  1. 2t



(3t^2 −1)

[
2
9


(3t^2 −1)^3 +c

]

5.

lnθ
θ

[
1
2

(lnθ)^2 +c

]


  1. 3 tan 2t


[
3
2

ln ( sec 2t)+c

]

7.

2et

(et+4)

[
4


(et+4)+c

]

In Problems 8 to 10, evaluate the definite inte-
grals correct to 4 significant figures.

8.

∫ 1

0

3 xe(2x

(^2) −1)
dx [1.763]
9.
∫ π
2
0
3 sin^4 θcosθdθ [0.6000]
10.
∫ 1
0
3 x
(4x^2 −1)^5
dx [0.09259]

Free download pdf