H
Integral calculus
40
Integration using trigonometric and
hyperbolic substitutions
40.1 Introduction
Table 40.1 gives a summary of the integrals that
require the use oftrigonometric and hyperbolic
substitutionsand their application is demonstrated
in Problems 1 to 27.
40.2 Worked problems on integration
of sin^2 x, cos^2 x, tan^2 xand cot^2 x
Problem 1. Evaluate∫ π
402 cos^24 tdt.Since cos 2t=2 cos^2 t−1 (from Chapter 18),then cos^2 t=1
2(1+cos 2t) andcos^24 t=1
2(1+cos 8t)Hence
∫ π
402 cos^24 tdt= 2∫π
401
2(1+cos 8t)dt=[
t+sin 8t
8]π
40=⎡⎢
⎣π
4+sin 8(π4)8⎤⎥
⎦−[
0 +sin 0
8]=π
4or 0. 7854Problem 2. Determine∫
sin^23 xdx.Since cos 2x= 1 −2 sin^2 x(from Chapter 18),then sin^2 x=1
2(1−cos 2x) andsin^23 x=1
2(1−cos 6x)Hence∫
sin^23 xdx=∫
1
2(1−cos 6x)dx=1
2(
x−sin 6x
6)
+cProblem 3. Find 3∫
tan^24 xdx.Since 1+tan^2 x=sec^2 x, then tan^2 x=sec^2 x− 1
and tan^24 x=sec^24 x−1.Hence 3∫
tan^24 xdx= 3∫
( sec^24 x−1) dx= 3(
tan 4x
4−x)
+cProblem 4. Evaluate∫π
3
π
61
2cot^22 θdθ.Since cot^2 θ+ 1 =cosec^2 θ, then cot^2 θ=cosec^2 θ− 1
and cot^22 θ=cosec^22 θ−1.Hence∫π
3
π
61
2cot^22 θdθ=1
2∫ π
3
π
6(cosec^22 θ−1) dθ=1
2[
−cot 2θ
2−θ]π
3
π
6=1
2⎡⎢
⎣⎛⎜
⎝−cot 2(π3)2−π
3⎞⎟
⎠−⎛⎜
⎝−cot 2(π6)2−π
6⎞⎟
⎠⎤⎥
⎦=1
2[(0. 2887 − 1 .0472)−(− 0. 2887 − 0 .5236)]= 0. 0269