H
Integral calculus
40
Integration using trigonometric and
hyperbolic substitutions
40.1 Introduction
Table 40.1 gives a summary of the integrals that
require the use oftrigonometric and hyperbolic
substitutionsand their application is demonstrated
in Problems 1 to 27.
40.2 Worked problems on integration
of sin^2 x, cos^2 x, tan^2 xand cot^2 x
Problem 1. Evaluate
∫ π
4
0
2 cos^24 tdt.
Since cos 2t=2 cos^2 t−1 (from Chapter 18),
then cos^2 t=
1
2
(1+cos 2t) and
cos^24 t=
1
2
(1+cos 8t)
Hence
∫ π
4
0
2 cos^24 tdt
= 2
∫π
4
0
1
2
(1+cos 8t)dt
=
[
t+
sin 8t
8
]π
4
0
=
⎡
⎢
⎣
π
4
+
sin 8
(π
4
)
8
⎤
⎥
⎦−
[
0 +
sin 0
8
]
=
π
4
or 0. 7854
Problem 2. Determine
∫
sin^23 xdx.
Since cos 2x= 1 −2 sin^2 x(from Chapter 18),
then sin^2 x=
1
2
(1−cos 2x) and
sin^23 x=
1
2
(1−cos 6x)
Hence
∫
sin^23 xdx=
∫
1
2
(1−cos 6x)dx
=
1
2
(
x−
sin 6x
6
)
+c
Problem 3. Find 3
∫
tan^24 xdx.
Since 1+tan^2 x=sec^2 x, then tan^2 x=sec^2 x− 1
and tan^24 x=sec^24 x−1.
Hence 3
∫
tan^24 xdx= 3
∫
( sec^24 x−1) dx
= 3
(
tan 4x
4
−x
)
+c
Problem 4. Evaluate
∫π
3
π
6
1
2
cot^22 θdθ.
Since cot^2 θ+ 1 =cosec^2 θ, then cot^2 θ=cosec^2 θ− 1
and cot^22 θ=cosec^22 θ−1.
Hence
∫π
3
π
6
1
2
cot^22 θdθ
=
1
2
∫ π
3
π
6
(cosec^22 θ−1) dθ=
1
2
[
−cot 2θ
2
−θ
]π
3
π
6
=
1
2
⎡
⎢
⎣
⎛
⎜
⎝
−cot 2
(π
3
)
2
−
π
3
⎞
⎟
⎠−
⎛
⎜
⎝
−cot 2
(π
6
)
2
−
π
6
⎞
⎟
⎠
⎤
⎥
⎦
=
1
2
[(0. 2887 − 1 .0472)−(− 0. 2887 − 0 .5236)]
= 0. 0269