398 INTEGRAL CALCULUS
Table 40.1 Integrals using trigonometric and hyperbolic substitutions
f(x)
∫
f(x)dx Method See problem
- cos^2 x
1
2
(
x+
sin 2x
2
)
+c Use cos 2x=2 cos^2 x− 1 1
- sin^2 x
1
2
(
x−
sin 2x
2
)
+c Use cos 2x= 1 −2 sin^2 x 2
- tan^2 x tanx−x+c Use 1+tan^2 x=sec^2 x 3
- cot^2 x −cotx−x+c Use cot^2 x+ 1 =cosec^2 x 4
- cosmxsinnx (a) If eithermornis odd (but not both), use
cos^2 x+sin^2 x= 1 5, 6
(b) If bothmandnare even, use either
cos 2x=2 cos^2 x−1 or cos 2x= 1 −2 sin^2 x 7, 8 - sinAcosB Use^12 [ sin(A+B)+sin(A−B)] 9
- cosAsinB Use^12 [ sin(A+B)−sin(A−B)] 10
- cosAcosB Use^12 [ cos(A+B)+cos(A−B)] 11
- sinAsinB Use−^12 [ cos(A+B)−cos(A−B)] 12
10.
1
√
(a^2 −x^2 )
sin−^1
x
a
+c Usex=asinθsubstitution 13, 14
11.
√
(a^2 −x^2 )
a^2
2
sin−^1
x
a
+
x
2
√
(a^2 −x^2 )+c Usex=asinθsubstitution 15, 16
12.
1
a^2 +x^2
1
a
tan−^1
x
a
+c Usex=atanθsubstitution 17–19
13.
1
√
(x^2 +a^2 )
sinh−^1
x
a
+c Usex=asinhθsubstitution 20–22
or ln
{
x+
√
(x^2 +a^2 )
a
}
+c
14.
√
(x^2 +a^2 )
a^2
2
sinh−^1
x
a
+
x
2
√
(x^2 +a^2 )+c Usex=asinhθsubstitution 23
15.
1
√
(x^2 −a^2 )
cosh−^1
x
a
+c Usex=acoshθsubstitution 24, 25
or ln
{
x+
√
(x^2 −a^2 )
a
}
+c
16.
√
(x^2 −a^2 )
x
2
√
(x^2 −a^2 )−
a^2
2
cosh−^1
x
a
+c Usex=acoshθsubstitution 26, 27