Higher Engineering Mathematics

(Greg DeLong) #1

398 INTEGRAL CALCULUS


Table 40.1 Integrals using trigonometric and hyperbolic substitutions

f(x)


f(x)dx Method See problem


  1. cos^2 x


1
2

(
x+

sin 2x
2

)
+c Use cos 2x=2 cos^2 x− 1 1


  1. sin^2 x


1
2

(
x−

sin 2x
2

)
+c Use cos 2x= 1 −2 sin^2 x 2


  1. tan^2 x tanx−x+c Use 1+tan^2 x=sec^2 x 3

  2. cot^2 x −cotx−x+c Use cot^2 x+ 1 =cosec^2 x 4

  3. cosmxsinnx (a) If eithermornis odd (but not both), use
    cos^2 x+sin^2 x= 1 5, 6
    (b) If bothmandnare even, use either
    cos 2x=2 cos^2 x−1 or cos 2x= 1 −2 sin^2 x 7, 8

  4. sinAcosB Use^12 [ sin(A+B)+sin(A−B)] 9

  5. cosAsinB Use^12 [ sin(A+B)−sin(A−B)] 10

  6. cosAcosB Use^12 [ cos(A+B)+cos(A−B)] 11

  7. sinAsinB Use−^12 [ cos(A+B)−cos(A−B)] 12


10.

1

(a^2 −x^2 )

sin−^1

x
a

+c Usex=asinθsubstitution 13, 14

11.


(a^2 −x^2 )

a^2
2

sin−^1

x
a

+

x
2


(a^2 −x^2 )+c Usex=asinθsubstitution 15, 16

12.

1
a^2 +x^2

1
a

tan−^1

x
a

+c Usex=atanθsubstitution 17–19

13.

1

(x^2 +a^2 )

sinh−^1

x
a

+c Usex=asinhθsubstitution 20–22

or ln

{
x+


(x^2 +a^2 )
a

}
+c

14.


(x^2 +a^2 )

a^2
2

sinh−^1

x
a

+

x
2


(x^2 +a^2 )+c Usex=asinhθsubstitution 23

15.

1

(x^2 −a^2 )

cosh−^1

x
a

+c Usex=acoshθsubstitution 24, 25

or ln

{
x+


(x^2 −a^2 )
a

}
+c

16.


(x^2 −a^2 )

x
2


(x^2 −a^2 )−

a^2
2

cosh−^1

x
a

+c Usex=acoshθsubstitution 26, 27
Free download pdf