402 INTEGRAL CALCULUS
Sincex=asinθ, then sinθ=
x
aandθ=sin−^1x
a.Hence
∫
1
√
(a^2 −x^2 )dx=sin−^1x
a+cProblem 14. Evaluate∫ 301
√
(9−x^2 )dx.From Problem 13,
∫ 301
√
(9−x^2 )dx=[
sin−^1x
3] 30, sincea= 3=(sin−^11 −sin−^1 0)=π
2or 1. 5708Problem 15. Find∫ √
(a^2 −x^2 )dx.Letx=asinθthen
dx
dθ=acosθand dx=acosθdθ.Hence
∫ √
(a^2 −x^2 )dx=∫ √
(a^2 −a^2 sin^2 θ)(acosθdθ)=∫ √
[a^2 (1−sin^2 θ)] (acosθdθ)=∫ √
(a^2 cos^2 θ)(acosθdθ)=∫
(acosθ)(acosθdθ)=a^2∫
cos^2 θdθ=a^2∫ (
1 +cos 2θ
2)
dθ(since cos 2θ=2 cos^2 θ−1)=a^2
2(
θ+sin 2θ
2)
+c=a^2
2(
θ+2 sinθcosθ
2)
+csince from Chapter 18, sin 2θ=2 sinθcosθ=a^2
2[θ+sinθcosθ]+cSincex=asinθ, then sinθ=x
aandθ=sin−^1x
a
Also, cos^2 θ+sin^2 θ=1, from which,cosθ=√
(1−sin^2 θ)=√[1 −(xa) 2 ]=√(
a^2 −x^2
a^2)
=√
(a^2 −x^2 )
aThus∫ √
(a^2 −x^2 )dx=a^2
2[θ+sinθcosθ]=a^2
2[sin−^1x
a+(xa)√(a (^2) −x (^2) )
a
]
+c
a^2
2
sin−^1
x
a
x
2
√
(a^2 −x^2 )+c
Problem 16. Evaluate
∫ 4
0
√
(16−x^2 )dx.
From Problem 15,
∫ 4
0
√
(16−x^2 )dx
[
16
2
sin−^1
x
4
x
2
√
(16−x^2 )
] 4
0
[
8 sin−^11 + 2
√
(0)
]
−[8 sin−^10 +0]
=8 sin−^11 = 8
(π
2
)
= 4 πor 12. 57
Now try the following exercise.
Exercise 159 Further problems on integra-
tion using the sineθsubstitution
- Determine
∫
5
√
(4−t^2 )dt
[
5 sin−^1x
2+c]- Determine
∫
3
√
(9−x^2 )dx
[
3 sin−^1x
3+c]- Determine
∫ √
(4−x^2 )dx
[
2 sin−^1x
2+x
2√
(4−x^2 )+c]