Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 401

H

Problem 11. Evaluate

∫ 1

0

2 cos 6θcosθdθ,

correct to 4 decimal places.

∫ 1

0

2 cos 6θcosθdθ

= 2

∫ 1

0

1
2

[ cos (6θ+θ)+cos (6θ−θ)] dθ,

from 8 of Table 40.1

=

∫ 1

0

(cos 7θ+cos 5θ)dθ=

[
sin 7θ
7

+

sin 5θ
5

] 1

0

=

(
sin 7
7

+

sin 5
5

)

(
sin 0
7

+

sin 0
5

)

‘sin 7’ means ‘the sine of 7 radians’ (≡ 401 ◦ 4 ′) and
sin 5≡ 286 ◦ 29 ′.


Hence

∫ 1

0

2 cos 6θcosθdθ

=(0. 09386 +(− 0 .19178))−(0)
=− 0. 0979 , correct to 4 decimal places

Problem 12. Find 3


sin 5xsin 3xdx.

3


sin 5xsin 3xdx

= 3



1
2

[ cos (5x+ 3 x)−cos (5x− 3 x)] dx,

from 9 of Table 40.1

=−

3
2


( cos 8x−cos 2x)dx

=−

3
2

(
sin 8
8


sin 2x
2

)
+c or

3
16

(4 sin 2x−sin 8x)+c

Now try the following exercise.


Exercise 158 Further problems on integra-
tion of products of sines and cosines

In Problems 1 to 4, integrate with respect to the
variable.


  1. sin 5tcos 2t


[

1
2

(
cos 7t
7

+

cos 3t
3

)
+c

]


  1. 2 sin 3xsinx


[
sin 2x
2


sin 4x
4

+c

]


  1. 3 cos 6xcosx [
    3
    2


(
sin 7x
7

+

sin 5x
5

)
+c

]

4.

1
2

cos 4θsin 2θ
[
1
4

(
cos 2θ
2


cos 6θ
6

)
+c

]

In Problems 5 to 8, evaluate the definite integrals.

5.

∫π
2

0

cos 4xcos 3xdx

[
(a)

3
7

or 0. 4286

]

6.

∫ 1

0

2 sin 7tcos 3tdt [0.5973]

7.− 4

∫ π
3

0

sin 5θsin 2θdθ [0.2474]

8.

∫ 2

1

3 cos 8tsin 3tdt [−0.1999]

40.5 Worked problems on integration
using the sinθsubstitution

Problem 13. Determine


1

(a^2 −x^2 )

dx.

Letx=asinθ, then

dx

=acosθand dx=acosθdθ.

Hence


1

(a^2 −x^2 )

dx

=


1

(a^2 −a^2 sin^2 θ)

acosθdθ

=


acosθdθ

[a^2 (1−sin^2 θ)]

=


acosθdθ

(a^2 cos^2 θ)

, since sin^2 θ+cos^2 θ= 1

=


acosθdθ
acosθ

=


dθ=θ+c
Free download pdf