410 INTEGRAL CALCULUS
Thus
∫
2 x+ 3
(x−2)^2
dx≡
∫ {
2
(x−2)
+
7
(x−2)^2
}
dx
=2ln(x−2)−
7
(x−2)
+c
⎡
⎣
∫
7
(x−2)^2
dxis determined using the algebraic
substitutionu=(x−2) — see Chapter 39.
⎤
⎦
Problem 6. Find
∫
5 x^2 − 2 x− 19
(x+3)(x−1)^2
dx.
It was shown in Problem 6, page 21:
5 x^2 − 2 x− 19
(x+3)(x−1)^2
≡
2
(x+3)
+
3
(x−1)
−
4
(x−1)^2
Hence
∫
5 x^2 − 2 x− 19
(x+3)(x−1)^2
dx
≡
∫ {
2
(x+3)
+
3
(x−1)
−
4
(x−1)^2
}
dx
=2ln(x+3)+3ln(x−1)+
4
(x−1)
+c
orln
{
(x+3)^2 (x−1)^3
}
+
4
(x−1)
+c
Problem 7. Evaluate
∫ 1
− 2
3 x^2 + 16 x+ 15
(x+3)^3
dx,
correct to 4 significant figures.
It was shown in Problem 7, page 22:
3 x^2 + 16 x+ 15
(x+3)^3
≡
3
(x+3)
−
2
(x+3)^2
−
6
(x+3)^3
Hence
∫
3 x^2 + 16 x+ 15
(x+3)^3
dx
≡
∫ 1
− 2
{
3
(x+3)
−
2
(x+3)^2
−
6
(x+3)^3
}
dx
=
[
3ln(x+3)+
2
(x+3)
+
3
(x+3)^2
] 1
− 2
=
(
3ln4+
2
4
+
3
16
)
−
(
3ln1+
2
1
+
3
1
)
=− 0. 1536 , correct to 4 significant figures
Now try the following exercise.
Exercise 164 Further problems on integra-
tion using partial fractions with repeated
linear factors
In Problems 1 and 2, integrate with respect
tox.
1.
∫
4 x− 3
(x+1)^2
dx
[
4ln(x+1)+
7
(x+1)
+c
]
2.
∫
5 x^2 − 30 x+ 44
(x−2)^3
dx
⎡
⎢
⎣
5ln(x−2)+
10
(x−2)
−
2
(x−2)^2
+c
⎤
⎥
⎦
In Problems 3 and 4, evaluate the definite inte-
grals correct to 4 significant figures.
3.
∫ 2
1
x^2 + 7 x+ 3
x^2 (x+3)
[1.663]
4.
∫ 7
6
18 + 21 x−x^2
(x−5)(x+2)^2
dx [1.089]
- Show that
∫ 1
0
(
4 t^2 + 9 t+ 8
(t+2)(t+1)^2
)
dt= 2 .546,
correct to 4 significant figures.
41.4 Worked problems on integration
using partial fractions with
quadratic factors
Problem 8. Find
∫
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)
dx.