Higher Engineering Mathematics

(Greg DeLong) #1
410 INTEGRAL CALCULUS

Thus



2 x+ 3
(x−2)^2

dx≡

∫ {
2
(x−2)

+

7
(x−2)^2

}
dx

=2ln(x−2)−

7
(x−2)

+c




7
(x−2)^2

dxis determined using the algebraic

substitutionu=(x−2) — see Chapter 39.



Problem 6. Find


5 x^2 − 2 x− 19
(x+3)(x−1)^2

dx.

It was shown in Problem 6, page 21:

5 x^2 − 2 x− 19
(x+3)(x−1)^2


2
(x+3)

+

3
(x−1)


4
(x−1)^2

Hence


5 x^2 − 2 x− 19
(x+3)(x−1)^2

dx


∫ {
2
(x+3)

+

3
(x−1)


4
(x−1)^2

}
dx

=2ln(x+3)+3ln(x−1)+

4
(x−1)

+c

orln

{
(x+3)^2 (x−1)^3

}
+

4
(x−1)

+c

Problem 7. Evaluate
∫ 1

− 2

3 x^2 + 16 x+ 15
(x+3)^3

dx,

correct to 4 significant figures.

It was shown in Problem 7, page 22:

3 x^2 + 16 x+ 15
(x+3)^3


3
(x+3)


2
(x+3)^2


6
(x+3)^3

Hence


3 x^2 + 16 x+ 15
(x+3)^3

dx


∫ 1

− 2

{
3
(x+3)


2
(x+3)^2


6
(x+3)^3

}
dx

=

[
3ln(x+3)+

2
(x+3)

+

3
(x+3)^2

] 1

− 2

=

(
3ln4+

2
4

+

3
16

)

(
3ln1+

2
1

+

3
1

)

=− 0. 1536 , correct to 4 significant figures

Now try the following exercise.

Exercise 164 Further problems on integra-
tion using partial fractions with repeated
linear factors

In Problems 1 and 2, integrate with respect
tox.

1.


4 x− 3
(x+1)^2

dx

[
4ln(x+1)+

7
(x+1)

+c

]

2.


5 x^2 − 30 x+ 44
(x−2)^3

dx




5ln(x−2)+

10
(x−2)

2
(x−2)^2

+c




In Problems 3 and 4, evaluate the definite inte-
grals correct to 4 significant figures.

3.

∫ 2

1

x^2 + 7 x+ 3
x^2 (x+3)

[1.663]

4.

∫ 7

6

18 + 21 x−x^2
(x−5)(x+2)^2

dx [1.089]


  1. Show that


∫ 1

0

(
4 t^2 + 9 t+ 8
(t+2)(t+1)^2

)
dt= 2 .546,

correct to 4 significant figures.

41.4 Worked problems on integration
using partial fractions with
quadratic factors

Problem 8. Find


3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)

dx.
Free download pdf