412 INTEGRAL CALCULUS
=
1
2 a
[−ln (a−x)+ln (a+x)]+c
=
1
2 a
ln
(
a+x
a−x
)
+c
Problem 12. Evaluate
∫ 2
0
5
(9−x^2 )
dx,
correct to 4 decimal places.
From Problem 11,
∫ 2
0
5
(9−x^2 )
dx= 5
[
1
2(3)
ln
(
3 +x
3 −x
)] 2
0
=
5
6
[
ln
5
1
−ln 1
]
= 1. 3412 , correct to 4
decimal places
Now try the following exercise.
Exercise 165 Further problems on integra-
tion using partial fractions with quadratic
factors
- Determine
∫
x^2 −x− 13
(x^2 +7)(x−2)
dx
⎡
⎣ln (x
(^2) +7)+√^3
7
tan−^1
x
√
7
−ln (x−2)+c
⎤
⎦
In Problems 2 to 4, evaluate the definite integrals
correct to 4 significant figures.
2.
∫ 6
5
6 x− 5
(x−4)(x^2 +3)
dx [0.5880]
3.
∫ 2
1
4
(16−x^2 )
dx [0.2939]
4.
∫ 5
4
2
(x^2 −9)
dx [0.1865]
- Show that
∫ 2
1
(
2 +θ+ 6 θ^2 − 2 θ^3
θ^2 (θ^2 +1)
)
dθ
=1.606, correct to 4 significant figures.