H
Integral calculus
42
The t=tan
θ
2
substitution
42.1 Introduction
Integrals of the form
∫
1
acosθ+bsinθ+c
dθ,
wherea,bandcare constants, may be determined
by using the substitutiont=tan
θ
2
. The reason is
explained below.
If angleAin the right-angled triangle ABC shown
in Fig. 42.1 is made equal to
θ
2
then, since tangent=
opposite
adjacent
,ifBC=tandAB=1, then tan
θ
2
=t.
By Pythagoras’ theorem,AC=
√
1 +t^2
C
A B
t
2
1
1 t^2
θ
Figure 42.1
Therefore sin
θ
2
=
t
√
1 +t^2
and cos
θ
2
=
1
√
1 +t^2
Since sin 2x=2 sinxcosx(from double angle for-
mulae, Chapter 18), then
sinθ=2 sin
θ
2
cos
θ
2
= 2
(
t
√
1 +t^2
)(
t
√
1 +t^2
)
i.e. sinθ=
2 t
( 1 +t^2 )
(1)
Since cos 2x=cos^2
θ
2
−sin^2
θ
2
=
(
1
√
1 +t^2
) 2
−
(
t
√
1 +t^2
) 2
i.e. cosθ=
1 −t^2
1 +t^2
(2)
Also, sincet=tan
θ
2
,
dt
dθ
=
1
2
sec^2
θ
2
=
1
2
(
1 +tan^2
θ
2
)
from trigonomet-
ric identities,
i.e.
dt
dθ
=
1
2
(1+t^2 )
from which, dθ=
2dt
1 +t^2
(3)
Equations (1), (2) and (3) are used to determine
integrals of the form
∫
1
acosθ+bsinθ+c
dθ
wherea,borcmay be zero.
42.2 Worked problems on thet=tan
θ
2
substitution
Problem 1. Determine:
∫
dθ
sinθ
If t=tan
θ
2
then sinθ=
2 t
1 +t^2
and dθ=
2dt
1 +t^2
from equations (1) and (3).
Thus
∫
dθ
sinθ
=
∫
1
sinθ
dθ