H
Integral calculus
42
The t=tan
θ
2
substitution
42.1 Introduction
Integrals of the form
∫
1
acosθ+bsinθ+cdθ,wherea,bandcare constants, may be determined
by using the substitutiont=tan
θ
2. The reason is
explained below.
If angleAin the right-angled triangle ABC shown
in Fig. 42.1 is made equal to
θ
2then, since tangent=
opposite
adjacent,ifBC=tandAB=1, then tanθ
2=t.By Pythagoras’ theorem,AC=√
1 +t^2CA Bt2
11 t^2θFigure 42.1
Therefore sin
θ
2=t
√
1 +t^2and cosθ
2=1
√
1 +t^2
Since sin 2x=2 sinxcosx(from double angle for-
mulae, Chapter 18), then
sinθ=2 sinθ
2cosθ
2= 2(
t
√
1 +t^2)(
t
√
1 +t^2)i.e. sinθ=
2 t
( 1 +t^2 )(1)Since cos 2x=cos^2θ
2−sin^2θ
2=(
1
√
1 +t^2) 2
−(
t
√
1 +t^2) 2i.e. cosθ=1 −t^2
1 +t^2(2)Also, sincet=tanθ
2,
dt
dθ=1
2sec^2θ
2=1
2(
1 +tan^2θ
2)
from trigonomet-ric identities,i.e.dt
dθ=1
2(1+t^2 )from which, dθ=2dt
1 +t^2(3)Equations (1), (2) and (3) are used to determineintegrals of the form∫
1
acosθ+bsinθ+cdθwherea,borcmay be zero.42.2 Worked problems on thet=tan
θ
2
substitutionProblem 1. Determine:∫
dθ
sinθIf t=tanθ
2then sinθ=2 t
1 +t^2and dθ=2dt
1 +t^2
from equations (1) and (3).Thus∫
dθ
sinθ=∫
1
sinθdθ