INTEGRATION BY PARTS 419
H
=
3
2
te^2 t−
3
2
∫
e^2 tdt
=
3
2
te^2 t−
3
2
(
e^2 t
2
)
+c
Hence
∫
3 te^2 tdt=^32 e^2 t
(
t−^12
)
+c,
which may be checked by differentiating.
Problem 3. Evaluate
∫ π
2
0
2 θsinθdθ.
Letu= 2 θ, from which,
du
dθ
=2, i.e. du=2dθand
let dv=sinθdθ, from which,
v=
∫
sinθdθ=−cosθ
Substituting into
∫
udv=uv−
∫
vdugives:
∫
2 θsinθdθ=(2θ)(−cosθ)−
∫
(−cosθ)(2 dθ)
=− 2 θcosθ+ 2
∫
cosθdθ
=− 2 θcosθ+2 sinθ+c
Hence
∫π
2
0
2 θsinθdθ
=[− 2 θcosθ+2 sinθ]
π
2
0
=
[
− 2
(π
2
)
cos
π
2
+2 sin
π
2
]
−[0+2 sin 0]
=(− 0 +2)−(0+0)= 2
since cos
π
2
=0 and sin
π
2
= 1
Problem 4. Evaluate
∫ 1
0
5 xe^4 xdx, correct to
3 significant figures.
Letu= 5 x, from which
du
dx
=5, i.e. du=5dxand
let dv=e^4 xdx, from which,v=
∫
e^4 xdx=^14 e^4 x.
Substituting into
∫
udv=uv−
∫
vdugives:
∫
5 xe^4 xdx=(5x)
(
e^4 x
4
)
−
∫ (
e^4 x
4
)
(5 dx)
=
5
4
xe^4 x−
5
4
∫
e^4 xdx
=
5
4
xe^4 x−
5
4
(
e^4 x
4
)
+c
=
5
4
e^4 x
(
x−
1
4
)
+c
Hence
∫ 1
0
5 xe^4 xdx
=
[
5
4
e^4 x
(
x−
1
4
)] 1
0
=
[
5
4
e^4
(
1 −
1
4
)]
−
[
5
4
e^0
(
0 −
1
4
)]
=
(
15
16
e^4
)
−
(
−
5
16
)
= 51. 186 + 0. 313 = 51. 499 =51.5,
correct to 3 significant figures
Problem 5. Determine
∫
x^2 sinxdx.
Letu=x^2 , from which,
du
dx
= 2 x, i.e. du= 2 xdx, and
let dv=sinxdx, from which,
v=
∫
sinxdx=−cosx
Substituting into
∫
udv=uv−
∫
vdugives:
∫
x^2 sinxdx=(x^2 )(−cosx)−
∫
(−cosx)(2xdx)
=−x^2 cosx+ 2
[∫
xcosxdx
]
The integral,
∫
xcosxdx, is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.