Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION BY PARTS 419

H

=

3
2

te^2 t−

3
2


e^2 tdt

=

3
2

te^2 t−

3
2

(
e^2 t
2

)
+c

Hence

3 te^2 tdt=^32 e^2 t


(
t−^12

)
+c,

which may be checked by differentiating.


Problem 3. Evaluate

∫ π
2
0

2 θsinθdθ.

Letu= 2 θ, from which,


du

=2, i.e. du=2dθand

let dv=sinθdθ, from which,


v=


sinθdθ=−cosθ

Substituting into



udv=uv−


vdugives:


2 θsinθdθ=(2θ)(−cosθ)−


(−cosθ)(2 dθ)

=− 2 θcosθ+ 2


cosθdθ

=− 2 θcosθ+2 sinθ+c

Hence

∫π
2

0

2 θsinθdθ

=[− 2 θcosθ+2 sinθ]

π
2
0
=

[
− 2


2

)
cos

π
2

+2 sin

π
2

]
−[0+2 sin 0]

=(− 0 +2)−(0+0)= 2

since cos

π
2

=0 and sin

π
2

= 1

Problem 4. Evaluate

∫ 1

0

5 xe^4 xdx, correct to

3 significant figures.

Letu= 5 x, from which


du
dx

=5, i.e. du=5dxand

let dv=e^4 xdx, from which,v=



e^4 xdx=^14 e^4 x.

Substituting into


udv=uv−


vdugives:


5 xe^4 xdx=(5x)

(
e^4 x
4

)

∫ (
e^4 x
4

)
(5 dx)

=

5
4

xe^4 x−

5
4


e^4 xdx

=

5
4

xe^4 x−

5
4

(
e^4 x
4

)
+c

=

5
4

e^4 x

(
x−

1
4

)
+c

Hence

∫ 1

0

5 xe^4 xdx

=

[
5
4

e^4 x

(
x−

1
4

)] 1

0

=

[
5
4

e^4

(
1 −

1
4

)]

[
5
4

e^0

(
0 −

1
4

)]

=

(
15
16

e^4

)

(

5
16

)

= 51. 186 + 0. 313 = 51. 499 =51.5,

correct to 3 significant figures

Problem 5. Determine


x^2 sinxdx.

Letu=x^2 , from which,

du
dx

= 2 x, i.e. du= 2 xdx, and
let dv=sinxdx, from which,

v=


sinxdx=−cosx

Substituting into


udv=uv−


vdugives:


x^2 sinxdx=(x^2 )(−cosx)−


(−cosx)(2xdx)

=−x^2 cosx+ 2

[∫
xcosxdx

]

The integral,


xcosxdx, is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.
Free download pdf