INTEGRATION BY PARTS 419H
=3
2te^2 t−3
2∫
e^2 tdt=3
2te^2 t−3
2(
e^2 t
2)
+cHence
∫
3 te^2 tdt=^32 e^2 t
(
t−^12)
+c,which may be checked by differentiating.
Problem 3. Evaluate∫ π
2
02 θsinθdθ.Letu= 2 θ, from which,
du
dθ=2, i.e. du=2dθandlet dv=sinθdθ, from which,
v=∫
sinθdθ=−cosθSubstituting into
∫
udv=uv−∫
vdugives:∫
2 θsinθdθ=(2θ)(−cosθ)−∫
(−cosθ)(2 dθ)=− 2 θcosθ+ 2∫
cosθdθ=− 2 θcosθ+2 sinθ+cHence∫π
202 θsinθdθ=[− 2 θcosθ+2 sinθ]π
2
0
=[
− 2(π2)
cosπ
2+2 sinπ
2]
−[0+2 sin 0]=(− 0 +2)−(0+0)= 2since cosπ
2=0 and sinπ
2= 1Problem 4. Evaluate∫ 105 xe^4 xdx, correct to3 significant figures.Letu= 5 x, from which
du
dx=5, i.e. du=5dxandlet dv=e^4 xdx, from which,v=
∫
e^4 xdx=^14 e^4 x.Substituting into∫
udv=uv−∫
vdugives:∫
5 xe^4 xdx=(5x)(
e^4 x
4)
−∫ (
e^4 x
4)
(5 dx)=5
4xe^4 x−5
4∫
e^4 xdx=5
4xe^4 x−5
4(
e^4 x
4)
+c=5
4e^4 x(
x−1
4)
+cHence∫ 105 xe^4 xdx=[
5
4e^4 x(
x−1
4)] 10=[
5
4e^4(
1 −1
4)]
−[
5
4e^0(
0 −1
4)]=(
15
16e^4)
−(
−5
16)= 51. 186 + 0. 313 = 51. 499 =51.5,correct to 3 significant figuresProblem 5. Determine∫
x^2 sinxdx.Letu=x^2 , from which,du
dx= 2 x, i.e. du= 2 xdx, and
let dv=sinxdx, from which,v=∫
sinxdx=−cosxSubstituting into∫
udv=uv−∫
vdugives:∫
x^2 sinxdx=(x^2 )(−cosx)−∫
(−cosx)(2xdx)=−x^2 cosx+ 2[∫
xcosxdx]The integral,∫
xcosxdx, is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.