REDUCTION FORMULAE 427H
Problem 6. Use a reduction formula to deter-
mine∫
x^3 sinxdx.Using equation (3),
∫
x^3 sinxdx=I 3
=−x^3 cosx+ 3 x^2 sinx−3(2)I 1and I 1 =−x^1 cosx+ 1 x^0 sinx
=−xcosx+sinxHence
∫
x^3 sinxdx=−x^3 cosx+ 3 x^2 sinx
−6[−xcosx+sinx]=−x^3 cosx+ 3 x^2 sinx
+ 6 xcosx−6 sinx+cProblem 7. Evaluate∫π
203 θ^4 sinθdθ, correctto 2 decimal places.From equation (3),
In=[−xncosx+nxn−^1 (sinx)]
π
2
0 −n(n−1)In−^2=[(
−(π2)n
cosπ
2+n(π2)n− 1
sinπ
2)
−(0)]−n(n−1)In− 2=n(π2)n− 1
−n(n− 1 )In− 2Hence
∫ π
203 θ^4 sinθdθ= 3∫π
20θ^4 sinθdθ= 3 I 4= 3[
4(π2) 3
−4(3)I 2]I 2 = 2(π2) 1
−2(1)I 0 andI 0 =∫π
20θ^0 sinθdθ=[−cosx]π
2
0=[− 0 −(−1)]= 1Hence3∫π
20θ^4 sinθdθ= 3 I 4= 3[
4(π2) 3
−4(3){
2(π2) 1
−2(1)I 0}]= 3[
4(π2) 3
−4(3){
2(π2) 1
−2(1)(1)}]= 3[
4(π2) 3
− 24(π2) 1
+ 24]=3(15. 503 − 37. 699 +24)
=3(1.8039)= 5. 41Now try the following exercise.Exercise 171 Further problems on reduc-
tion formulae for integrals of the form∫
xncosxdxand∫
xnsinxdx- Use a reduction formula to determine∫
x^5 cosxdx.
⎡
⎣x^5 sinx+ 5 x^4 cosx− 20 x^3 sinx
− 60 x^2 cosx+ 120 xsinx
+120 cosx+c⎤⎦- Evaluate
∫π
0 x(^5) cosxdx, correct to 2 decimal
places. [−134.87]
- Use a reduction formula to determine∫
x^5 sinxdx.
⎡
⎣−x^5 cosx+ 5 x^4 sinx+ 20 x^3 cosx
− 60 x^2 sinx− 120 xcosx
+120 sinx+c⎤⎦- Evaluate
∫π
0 x(^5) sinxdx, correct to 2 decimal
places. [62.89]
44.4 Using reduction formulae for
integrals of the form
∫
sinnxdx
and
∫
cosnxdx
(a)
∫
sinnxdx
LetIn=
∫
sinnxdx≡
∫
sinn−^1 xsinxdxfrom laws
of indices.
Using integration by parts, letu=sinn−^1 x, from
which,