Higher Engineering Mathematics

(Greg DeLong) #1
REDUCTION FORMULAE 427

H

Problem 6. Use a reduction formula to deter-
mine


x^3 sinxdx.

Using equation (3),

x^3 sinxdx=I 3


=−x^3 cosx+ 3 x^2 sinx−3(2)I 1

and I 1 =−x^1 cosx+ 1 x^0 sinx


=−xcosx+sinx

Hence

x^3 sinxdx=−x^3 cosx+ 3 x^2 sinx


−6[−xcosx+sinx]

=−x^3 cosx+ 3 x^2 sinx
+ 6 xcosx−6 sinx+c

Problem 7. Evaluate

∫π
2

0

3 θ^4 sinθdθ, correct

to 2 decimal places.

From equation (3),


In=[−xncosx+nxn−^1 (sinx)]


π
2
0 −n(n−1)In−^2

=

[(


2

)n
cos

π
2

+n


2

)n− 1
sin

π
2

)
−(0)

]

−n(n−1)In− 2

=n


2

)n− 1
−n(n− 1 )In− 2

Hence


∫ π
2

0

3 θ^4 sinθdθ= 3

∫π
2

0

θ^4 sinθdθ

= 3 I 4

= 3

[
4


2

) 3
−4(3)I 2

]

I 2 = 2


2

) 1
−2(1)I 0 and

I 0 =

∫π
2

0

θ^0 sinθdθ=[−cosx]

π
2
0

=[− 0 −(−1)]= 1

Hence

3

∫π
2

0

θ^4 sinθdθ

= 3 I 4

= 3

[
4


2

) 3
−4(3)

{
2


2

) 1
−2(1)I 0

}]

= 3

[
4


2

) 3
−4(3)

{
2


2

) 1
−2(1)(1)

}]

= 3

[
4


2

) 3
− 24


2

) 1
+ 24

]

=3(15. 503 − 37. 699 +24)
=3(1.8039)= 5. 41

Now try the following exercise.

Exercise 171 Further problems on reduc-
tion formulae for integrals of the form∫
xncosxdxand


xnsinxdx


  1. Use a reduction formula to determine∫
    x^5 cosxdx.



x^5 sinx+ 5 x^4 cosx− 20 x^3 sinx
− 60 x^2 cosx+ 120 xsinx
+120 cosx+c




  1. Evaluate


∫π
0 x

(^5) cosxdx, correct to 2 decimal
places. [−134.87]



  1. Use a reduction formula to determine∫
    x^5 sinxdx.



−x^5 cosx+ 5 x^4 sinx+ 20 x^3 cosx
− 60 x^2 sinx− 120 xcosx
+120 sinx+c




  1. Evaluate


∫π
0 x

(^5) sinxdx, correct to 2 decimal
places. [62.89]
44.4 Using reduction formulae for
integrals of the form

sinnxdx
and

cosnxdx
(a)

sinnxdx
LetIn=

sinnxdx≡

sinn−^1 xsinxdxfrom laws
of indices.
Using integration by parts, letu=sinn−^1 x, from
which,

Free download pdf