REDUCTION FORMULAE 427
H
Problem 6. Use a reduction formula to deter-
mine
∫
x^3 sinxdx.
Using equation (3),
∫
x^3 sinxdx=I 3
=−x^3 cosx+ 3 x^2 sinx−3(2)I 1
and I 1 =−x^1 cosx+ 1 x^0 sinx
=−xcosx+sinx
Hence
∫
x^3 sinxdx=−x^3 cosx+ 3 x^2 sinx
−6[−xcosx+sinx]
=−x^3 cosx+ 3 x^2 sinx
+ 6 xcosx−6 sinx+c
Problem 7. Evaluate
∫π
2
0
3 θ^4 sinθdθ, correct
to 2 decimal places.
From equation (3),
In=[−xncosx+nxn−^1 (sinx)]
π
2
0 −n(n−1)In−^2
=
[(
−
(π
2
)n
cos
π
2
+n
(π
2
)n− 1
sin
π
2
)
−(0)
]
−n(n−1)In− 2
=n
(π
2
)n− 1
−n(n− 1 )In− 2
Hence
∫ π
2
0
3 θ^4 sinθdθ= 3
∫π
2
0
θ^4 sinθdθ
= 3 I 4
= 3
[
4
(π
2
) 3
−4(3)I 2
]
I 2 = 2
(π
2
) 1
−2(1)I 0 and
I 0 =
∫π
2
0
θ^0 sinθdθ=[−cosx]
π
2
0
=[− 0 −(−1)]= 1
Hence
3
∫π
2
0
θ^4 sinθdθ
= 3 I 4
= 3
[
4
(π
2
) 3
−4(3)
{
2
(π
2
) 1
−2(1)I 0
}]
= 3
[
4
(π
2
) 3
−4(3)
{
2
(π
2
) 1
−2(1)(1)
}]
= 3
[
4
(π
2
) 3
− 24
(π
2
) 1
+ 24
]
=3(15. 503 − 37. 699 +24)
=3(1.8039)= 5. 41
Now try the following exercise.
Exercise 171 Further problems on reduc-
tion formulae for integrals of the form∫
xncosxdxand
∫
xnsinxdx
- Use a reduction formula to determine∫
x^5 cosxdx.
⎡
⎣
x^5 sinx+ 5 x^4 cosx− 20 x^3 sinx
− 60 x^2 cosx+ 120 xsinx
+120 cosx+c
⎤
⎦
- Evaluate
∫π
0 x
(^5) cosxdx, correct to 2 decimal
places. [−134.87]
- Use a reduction formula to determine∫
x^5 sinxdx.
⎡
⎣
−x^5 cosx+ 5 x^4 sinx+ 20 x^3 cosx
− 60 x^2 sinx− 120 xcosx
+120 sinx+c
⎤
⎦
- Evaluate
∫π
0 x
(^5) sinxdx, correct to 2 decimal
places. [62.89]
44.4 Using reduction formulae for
integrals of the form
∫
sinnxdx
and
∫
cosnxdx
(a)
∫
sinnxdx
LetIn=
∫
sinnxdx≡
∫
sinn−^1 xsinxdxfrom laws
of indices.
Using integration by parts, letu=sinn−^1 x, from
which,