Higher Engineering Mathematics

(Greg DeLong) #1
432 INTEGRAL CALCULUS

=x(lnx)n−n


(lnx)n−^1 dx

i.e.In=x(lnx)n−nIn− 1

Whenn=3,

(lnx)^3 dx=I 3 =x(lnx)^3 − 3 I 2


I 2 =x(lnx)^2 − 2 I 1 and I 1 =


lnxdx=x(lnx−1)
from Problem 7, page 420.

Hence

(lnx)^3 dx=x(lnx)^3 −3[x(lnx)^2 − 2 I 1 ]+c

=x(lnx)^3 −3[x(lnx)^2
−2[x(lnx−1)]]+c
=x(lnx)^3 −3[x(lnx)^2
− 2 xlnx+ 2 x]+c
=x(lnx)^3 − 3 x(lnx)^2
+ 6 xlnx− 6 x+c
=x[(lnx)^3 −3(lnx)^2
+6lnx−6]+c

Now try the following exercise.

Exercise 173 Further problems on reduc-
tion formulae


  1. Evaluate


∫ π
2

0

cos^2 xsin^5 xdx.

[
8
105

]


  1. Determine



tan^6 xdxby using reduction

formulae and hence evaluate

∫ π
4

0

tan^6 xdx.
[
13
15


π
4

]


  1. Evaluate


∫ π
2

0

cos^5 xsin^4 xdx.

[
8
315

]


  1. Use a reduction formula to determine∫
    (lnx)^4 dx.
    [
    x(lnx)^4 − 4 x(lnx)^3 + 12 x(lnx)^2
    − 24 xlnx+ 24 x+c


]


  1. Show that


∫π
2

0

sin^3 θcos^4 θdθ=

2
35
Free download pdf