Higher Engineering Mathematics

(Greg DeLong) #1
REDUCTION FORMULAE 431

H

=


tann−^2 xsec^2 xdx−In− 2

i.e.In=


tann−^1 x
n− 1

−In− 2

Whenn=7,


I 7 =


tan^7 xdx=

tan^6 x
6

−I 5

I 5 =

tan^4 x
4

−I 3 and I 3 =

tan^2 x
2

−I 1

I 1 =


tanxdx=ln (secx) from

Problem 9, Chapter 39, page 393

Thus



tan^7 xdx=

tan^6 x
6


[
tan^4 x
4


(
tan^2 x
2

−ln(secx)

)]

Hence


tan^7 xdx

=

1
6

tan^6 x−

1
4

tan^4 x+

1
2

tan^2 x

−ln(secx)+c

Problem 14. Evaluate, using a reduction for-

mula,

∫π
2

0

sin^2 tcos^6 tdt.

∫ π
2

0

sin^2 tcos^6 tdt=

∫π
2

0

(1−cos^2 t) cos^6 tdt

=

∫π
2

0

cos^6 tdt−

∫π
2

0

cos^8 tdt

If In=


∫π
2

0

cosntdt

then
∫ π
2


0

sin^2 tcos^6 tdt=I 6 −I 8

and from equation (6),

I 6 =

5
6

I 4 =

5
6

[
3
4

I 2

]

=

5
6

[
3
4

(
1
2

I 0

)]

and I 0 =

∫ π
2

0

cos^0 tdt

=

∫ π
2

0

1dt=[x]

π
2
0 =

π
2

Hence I 6 =

5
6

·

3
4

·

1
2

·

π
2

=

15 π
96

or

5 π
32

Similarly,I 8 =

7
8

I 6 =

7
8

·

5 π
32
Thus
∫π
2

0

sin^2 tcos^6 tdt=I 6 −I 8

=

5 π
32


7
8

·

5 π
32

=

1
8

·

5 π
32

=

5 π
256

Problem 15. Use integration by parts to deter-
mine a reduction formula for


(lnx)ndx. Hence
determine


(lnx)^3 dx.

LetIn=


(lnx)ndx.
Using integration by parts, let u=(lnx)n, from
which,

du
dx

=n(lnx)n−^1

(
1
x

)

and du=n(lnx)n−^1

(
1
x

)
dx

and let dv=dx, from which,v=


dx=x

Then In=


(lnx)ndx

=(lnx)n(x)−


(x)n(lnx)n−^1

(
1
x

)
dx
Free download pdf