482 DIFFERENTIAL EQUATIONS
Table 51.1 Form of particular integral for different functions
Type Straightforward cases ‘Snag’ cases See
Try as particular integral: Try as particular integral: problem
(a)f(x)=a constant v=k v=kx(used when C.F. 1, 2
contains a constant)
(b)f(x)=polynomial (i.e. v=a+bx+cx^2 + ··· 3
f(x)=L+Mx+Nx^2 + ···
where any of the coefficients
may be zero)
(c)f(x)=an exponential function v=keax (i)v=kxeax(used when eax 4, 5
(i.e.f(x)=Aeax) appears in the C.F.)
(ii)v=kx^2 eax(used when eax 6
andxeaxboth appear in
the C.F.)
(d)f(x)=a sine or cosine function v=Asinpx+Bcospx v=x(Asinpx+Bcospx) 7, 8
(i.e.f(x)=asinpx+bcospx, (used when sinpxand/or
whereaorbmay be zero) cospxappears in the C.F.)
(e)f(x)=a sum e.g. 9
(i)f(x)= 4 x^2 −3 sin 2x (i)v=ax^2 +bx+c
+dsin 2x+e cos 2x
(ii)f(x)= 2 −x+e^3 x (ii)v=ax+b+ce^3 x
(f)f(x)=a product e.g. v=ex(Asin 2x+Bcos 2x) 10
f(x)=2excos 2x
51.3 Worked problems on differential
equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)where
f(x)is a constant or polynomial
Problem 1. Solve the differential equation
d^2 y
dx^2
+
dy
dx
− 2 y=4.
Using the procedure of Section 51.2:
(i)
d^2 y
dx^2
+
dy
dx
− 2 y=4 in D-operator form is
(D^2 +D−2)y=4.
(ii) Substitutingmfor D gives the auxiliary equa-
tionm^2 +m− 2 =0. Factorising gives: (m−1)
(m+2)=0, from whichm=1orm=−2.
(iii) Since the roots are real and different, the C.F.,
u=Aex+Be−^2 x.
(iv) Since the term on the right hand side of the given
equation is a constant, i.e.f(x)=4, let the P.I.
also be a constant, sayv=k(see Table 51.1(a)).
(v) Substituting v=k into (D^2 +D−2)v= 4
gives (D^2 +D−2)k=4. Since D(k)=0 and
D^2 (k)=0 then− 2 k=4, from which,k=−2.
Hence the P.I.,v=− 2.
(vi) The general solution is given byy=u+v, i.e.
y=Aex+Be−^2 x− 2.
Problem 2. Determine the particular solu-
tion of the equation
d^2 y
dx^2
− 3
dy
dx
=9, given the
boundary conditions that whenx=0,y=0 and
dy
dx
=0.
Using the procedure of Section 51.2:
(i)
d^2 y
dx^2
− 3
dy
dx
=9 in D-operator form is
(D^2 −3D)y=9.