SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 485
I
the P.I., v=kxe
3
2 x (see Table 51.1(c), snag
case (i)).
(iv) Substitutingv=kxe
3
2 xinto (2D^2 −D−3)v=
5e
3
2 xgives: (2D^2 −D−3)kxe
3
2 x=5e
3
2 x.
D
(
kxe
3
2 x
)
=(kx)
(
3
2 e
3
2 x
)
+
(
e
3
2 x
)
(k),
by the product rule,
=ke
3
2 x
( 3
2 x+^1
)
D^2
(
kxe
3
2 x
)
=D
[
ke
3
2 x
( 3
2 x+^1
)
]
=
(
ke
3
2 x
)
( 3
2
)
+
( 3
2 x+^1
)
(
3
2 ke
3
2 x
)
=ke
3
2 x
( 9
4 x+^3
)
Hence (2D^2 −D−3)
(
kxe
3
2 x
)
= 2
[
ke
3
2 x
( 9
4 x+^3
)
]
−
[
ke
3
2 x
( 3
2 x+^1
)
]
− 3
[
kxe
3
2 x
]
=5e
3
2 x
i.e.^92 kxe
3
2 x+ 6 ke
3
2 x−^32 xke
3
2 x−ke
3
2 x
− 3 kxe
3
2 x=5e
3
2 x
Equating coefficients of e
3
2 xgives: 5k=5, from
which,k=1.
Hence the P.I.,v=kxe
3
2 x=xe
3
2 x.
(v) The general solution is y=u+v, i.e.
y=Ae
3
2 x+Be−x+xe
3
2 x.
Problem 6. Solve
d^2 y
dx^2
− 4
dy
dx
+ 4 y=3e^2 x.
Using the procedure of Section 51.2:
(i)
d^2 y
dx^2
− 4
dy
dx
+ 4 y=3e^2 xin D-operator form is
(D^2 −4D+4)y=3e^2 x.
(ii) Substituting m for D gives the auxiliary
equationm^2 − 4 m+ 4 =0. Factorising gives:
(m−2)(m−2)=0, from which,m=2 twice.
(iii) Since the roots are real and equal, the C.F.,
u=(Ax+B)e^2 x.
(iv) Since e^2 xandxe^2 xboth appear in the C.F.
let the P.I.,v=kx^2 e^2 x(see Table 51.1(c), snag
case (ii)).
(v) Substitutingv=kx^2 e^2 xinto (D^2 −4D+4)v=
3e^2 xgives: (D^2 −4D+4)(kx^2 e^2 x)=3e^2 x
D(kx^2 e^2 x)=(kx^2 )(2e^2 x)+(e^2 x)(2kx)
= 2 ke^2 x(x^2 +x)
D^2 (kx^2 e^2 x)=D[2ke^2 x(x^2 +x)]
=(2ke^2 x)(2x+1)+(x^2 +x)(4ke^2 x)
= 2 ke^2 x(4x+ 1 + 2 x^2 )
Hence (D^2 −4D+4)(kx^2 e^2 x)
=[2ke^2 x(4x+ 1 + 2 x^2 )]
−4[2ke^2 x(x^2 +x)]+4[kx^2 e^2 x]
=3e^2 x
from which, 2ke^2 x=3e^2 xandk=^32
Hence the P.I.,v=kx^2 e^2 x=^32 x^2 e^2 x.
(vi) The general solution,y=u+v, i.e.
y=(Ax+B)e^2 x+^32 x^2 e^2 x
Now try the following exercise.
Exercise 191 Further problems on differen-
tial equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)wheref(x) is an expo-
nential function
In Problems 1 to 4, find the general solutions of
the given differential equations.
1.
d^2 y
dx^2
−
dy
dx
− 6 y=2ex
[
y=Ae^3 x+Be−^2 x−^13 ex
]
2.
d^2 y
dx^2
− 3
dy
dx
− 4 y=3e−x
[
y=Ae^4 x+Be−x−^35 xe−x
]