Higher Engineering Mathematics

(Greg DeLong) #1
486 DIFFERENTIAL EQUATIONS

3.

d^2 y
dx^2

+ 9 y=26e^2 x

[y=Acos 3x+Bsin 3x+2e^2 x]


  1. 9


d^2 y
dt^2

− 6

dy
dt

+y=12e

t
3
[
y=(At+B)e

1
3 t+^23 t^2 e

1
3 t

]

In problems 5 and 6 find the particular solutions
of the given differential equations.


  1. 5


d^2 y
dx^2

+ 9

dy
dx

− 2 y=3ex; whenx=0,y=

1
4
and

dy
dx

=0.
[
y=

5
44

(
e−^2 x−e

1
5 x

)
+

1
4

ex

]

6.

d^2 y
dt^2

− 6

dy
dt

+ 9 y=4e^3 t; whent=0,y= 2

and

dy
dt

=0[y=2e^3 t(1− 3 t+t^2 )]

51.5 Worked problems on differential


equations of the form


a


d^2 y


dx^2


+b


dy


dx


+cy=f(x)wheref(x)


is a sine or cosine function


Problem 7. Solve the differential equation

2

d^2 y
dx^2

+ 3

dy
dx

− 5 y=6 sin 2x.

Using the procedure of Section 51.2:

(i) 2

d^2 y
dx^2

+ 3

dy
dx

− 5 y=6 sin 2xin D-operator form

is (2D^2 +3D−5)y=6 sin 2x

(ii) The auxiliary equation is 2m^2 + 3 m− 5 =0,
from which,

(m−1)(2m+5)=0,
i.e. m=1orm=−^52

(iii) Since the roots are real and different the C.F.,
u=Aex+Be−

5
2 x.

(iv) Let the P.I., v=Asin 2x+Bcos 2x (see
Table 51.1(d)).

(v) Substitutingv=Asin 2x+Bcos 2xinto
(2D^2 +3D−5)v=6 sin 2xgives:
(2D^2 +3D−5)(Asin 2x+Bcos 2x)=6 sin 2x.

D(Asin 2x+Bcos 2x)
= 2 Acos 2x− 2 Bsin 2x
D^2 (Asin 2x+Bcos 2x)
=D(2Acos 2x− 2 Bsin 2x)
=− 4 Asin 2x− 4 Bcos 2x
Hence (2D^2 +3D−5)(Asin 2x+Bcos 2x)
=− 8 Asin 2x− 8 Bcos 2x+ 6 Acos 2x
− 6 Bsin 2x− 5 Asin 2x− 5 Bcos 2x
=6 sin 2x
Equating coefficient of sin 2xgives:
− 13 A− 6 B= 6 (1)
Equating coefficients of cos 2xgives:
6 A− 13 B=0(2)

6 ×(1)gives : − 78 A− 36 B= 36 (3)

13 ×(2)gives : 78 A− 169 B=0(4)

(3)+(4)gives : − 205 B= 36

from which, B=

− 36
205

SubstitutingB=

− 36
205

into equation (1) or (2)

givesA=

− 78
205
Hence the P.I.,v=

− 78
205

sin 2x−

36
205

cos 2x.

(vi) The general solution,y=u+v, i.e.

y=Aex+Be−

5
2 x


2
205

(39 sin 2x+18 cos 2x)

Problem 8. Solve

d^2 y
dx^2

+ 16 y=10 cos 4x

giveny=3 and

dy
dx

=4 whenx=0.
Free download pdf