486 DIFFERENTIAL EQUATIONS3.d^2 y
dx^2+ 9 y=26e^2 x[y=Acos 3x+Bsin 3x+2e^2 x]- 9
d^2 y
dt^2− 6dy
dt+y=12et
3
[
y=(At+B)e1
3 t+^23 t^2 e1
3 t]In problems 5 and 6 find the particular solutions
of the given differential equations.- 5
d^2 y
dx^2+ 9dy
dx− 2 y=3ex; whenx=0,y=1
4
anddy
dx=0.
[
y=5
44(
e−^2 x−e1
5 x)
+1
4ex]6.d^2 y
dt^2− 6dy
dt+ 9 y=4e^3 t; whent=0,y= 2anddy
dt=0[y=2e^3 t(1− 3 t+t^2 )]51.5 Worked problems on differential
equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)wheref(x)
is a sine or cosine function
Problem 7. Solve the differential equation2d^2 y
dx^2+ 3dy
dx− 5 y=6 sin 2x.Using the procedure of Section 51.2:(i) 2d^2 y
dx^2+ 3dy
dx− 5 y=6 sin 2xin D-operator formis (2D^2 +3D−5)y=6 sin 2x(ii) The auxiliary equation is 2m^2 + 3 m− 5 =0,
from which,(m−1)(2m+5)=0,
i.e. m=1orm=−^52(iii) Since the roots are real and different the C.F.,
u=Aex+Be−5
2 x.(iv) Let the P.I., v=Asin 2x+Bcos 2x (see
Table 51.1(d)).(v) Substitutingv=Asin 2x+Bcos 2xinto
(2D^2 +3D−5)v=6 sin 2xgives:
(2D^2 +3D−5)(Asin 2x+Bcos 2x)=6 sin 2x.D(Asin 2x+Bcos 2x)
= 2 Acos 2x− 2 Bsin 2x
D^2 (Asin 2x+Bcos 2x)
=D(2Acos 2x− 2 Bsin 2x)
=− 4 Asin 2x− 4 Bcos 2x
Hence (2D^2 +3D−5)(Asin 2x+Bcos 2x)
=− 8 Asin 2x− 8 Bcos 2x+ 6 Acos 2x
− 6 Bsin 2x− 5 Asin 2x− 5 Bcos 2x
=6 sin 2x
Equating coefficient of sin 2xgives:
− 13 A− 6 B= 6 (1)
Equating coefficients of cos 2xgives:
6 A− 13 B=0(2)6 ×(1)gives : − 78 A− 36 B= 36 (3)13 ×(2)gives : 78 A− 169 B=0(4)(3)+(4)gives : − 205 B= 36from which, B=− 36
205SubstitutingB=− 36
205into equation (1) or (2)givesA=− 78
205
Hence the P.I.,v=− 78
205sin 2x−36
205cos 2x.(vi) The general solution,y=u+v, i.e.y=Aex+Be−5
2 x−2
205(39 sin 2x+18 cos 2x)Problem 8. Solved^2 y
dx^2+ 16 y=10 cos 4xgiveny=3 anddy
dx=4 whenx=0.