POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 501
I
Thus, whenr=1,
a 1 =
a 0
1(2+1)
=
a 0
1 × 3
whenr=2,
a 2 =
a 1
2(4+1)
=
a 1
(2×5)
=
a 0
(1×3)(2×5)
or
a 0
(1×2)×(3×5)
whenr=3,
a 3 =
a 2
3(6+1)
=
a 2
3 × 7
=
a 0
(1× 2 ×3)×(3× 5 ×7)
whenr=4,
a 4 =
a 3
4(8+1)
=
a 3
4 × 9
=
a 0
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)
and so on.
From equation (23), the trial solution was:
y=xc
{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···
}
Substitutingc=1 and the above values of
a 1 ,a 2 ,a 3 , ... into the trial solution gives:
y=x^1
{
a 0 +
a 0
(1×3)
x+
a 0
(1×2)×(3×5)
x^2
+
a 0
(1× 2 ×3)×(3× 5 ×7)
x^3
+
a 0
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)
x^4
+ ···
}
i.e.y=a 0 x^1
{
1 +
x
(1×3)
+
x^2
(1×2)×(3×5)
+
x^3
(1× 2 ×3)×(3× 5 ×7)
+
x^4
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)
+ ···
}
(26)
(b) Withc=
1
2
ar=
ar− 1
2(c+r−1)(c+r)−(c+r)+ 1
from equation (25)
i.e.ar=
ar− 1
2
(
1
2
+r− 1
)(
1
2
+r
)
−
(
1
2
+r
)
+ 1
=
ar− 1
2
(
r−
1
2
)(
r+
1
2
)
−
1
2
−r+ 1
=
ar− 1
2
(
r^2 −
1
4
)
−
1
2
−r+ 1
=
ar− 1
2 r^2 −
1
2
−
1
2
−r+ 1
=
ar− 1
2 r^2 −r
=
ar− 1
r(2r−1)
Thus, whenr=1,a 1 =
a 0
1(2−1)
=
a 0
1 × 1
whenr=2,a 2 =
a 1
2(4−1)
=
a 1
(2×3)
=
a 0
(2×3)
whenr=3,a 3 =
a 2
3(6−1)
=
a 2
3 × 5
=
a 0
(2×3)×(3×5)
whenr=4,a 4 =
a 3
4(8−1)
=
a 3
4 × 7
=
a 0
(2× 3 ×4)×(3× 5 ×7)
and so on.
From equation (23), the trial solution was:
y=xc
{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···
}
Substitutingc=
1
2
and the above values of
a 1 ,a 2 ,a 3 , ... into the trial solution gives:
y=x
1
2
{
a 0 +a 0 x+
a 0
(2×3)
x^2 +
a 0
(2×3)×(3×5)
x^3
+
a 0
(2× 3 ×4)×(3× 5 ×7)
x^4 + ···
}