POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 501I
Thus, whenr=1,
a 1 =a 0
1(2+1)=a 0
1 × 3whenr=2,
a 2 =a 1
2(4+1)=a 1
(2×5)=a 0
(1×3)(2×5)ora 0
(1×2)×(3×5)whenr=3,
a 3 =a 2
3(6+1)=a 2
3 × 7=a 0
(1× 2 ×3)×(3× 5 ×7)whenr=4,
a 4 =a 3
4(8+1)=a 3
4 × 9=a 0
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)
and so on.From equation (23), the trial solution was:
y=xc
{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···+arxr+···}Substitutingc=1 and the above values of
a 1 ,a 2 ,a 3 , ... into the trial solution gives:
y=x^1{
a 0 +a 0
(1×3)x+a 0
(1×2)×(3×5)x^2+a 0
(1× 2 ×3)×(3× 5 ×7)x^3+a 0
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)x^4+ ···}i.e.y=a 0 x^1
{
1 +x
(1×3)+x^2
(1×2)×(3×5)+x^3
(1× 2 ×3)×(3× 5 ×7)+x^4
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)+ ···}
(26)(b) Withc=1
2ar=ar− 1
2(c+r−1)(c+r)−(c+r)+ 1from equation (25)i.e.ar=ar− 12(
1
2+r− 1)(
1
2+r)
−(
1
2+r)
+ 1=ar− 12(
r−1
2)(
r+1
2)
−1
2−r+ 1=ar− 12(
r^2 −1
4)
−1
2−r+ 1=ar− 12 r^2 −1
2−1
2−r+ 1=ar− 1
2 r^2 −r=ar− 1
r(2r−1)Thus, whenr=1,a 1 =a 0
1(2−1)=a 0
1 × 1whenr=2,a 2 =a 1
2(4−1)=a 1
(2×3)=a 0
(2×3)whenr=3,a 3 =a 2
3(6−1)=a 2
3 × 5=a 0
(2×3)×(3×5)whenr=4,a 4 =a 3
4(8−1)=a 3
4 × 7=a 0
(2× 3 ×4)×(3× 5 ×7)
and so on.From equation (23), the trial solution was:y=xc{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···+arxr+···}Substitutingc=1
2and the above values of
a 1 ,a 2 ,a 3 , ... into the trial solution gives:y=x1
2{
a 0 +a 0 x+a 0
(2×3)x^2 +a 0
(2×3)×(3×5)x^3+a 0
(2× 3 ×4)×(3× 5 ×7)x^4 + ···}