628 LAPLACE TRANSFORMS
From equation (1),L{eat}=∫∞0e−st(eat)dt=∫∞0e−(s−a)tdt,from the laws of indices,=[
e−(s−a)t
−(s−a)]∞0=1
−(s−a)(0−1)=1
s−a
(provided (s−a)>0, i.e.s>a)
(d)f(t)=cosat(where a is a real constant).
From equation (1),L{cosat}=∫∞0e−stcosatdt=[
e−st
s^2 +a^2(asinat−scosat)]∞0
by integration by parts twice (see page 421),=[
e−s(∞)
s^2 +a^2(asina(∞)−scosa(∞))−e^0
s^2 +a^2(asin 0−scos 0)]=s
s^2 +a^2( provideds>0)(e)f(t)=t. From equation (1),L{t}=∫∞0e−sttdt=[
te−st
−s−∫
e−st
−sdt]∞0=[
te−st
−s−e−st
s^2]∞0
by integration by parts,=[
∞e−s(∞)
−s−e−s(∞)
s^2]
−[
0 −e^0
s^2]=(0−0)−(
0 −1
s^2)since (∞×0)=0,=1
s^2(provideds>0)(f) f(t)=tn(wheren=0, 1, 2, 3, ...).
By a similar method to (e) it may be shownthatL{t^2 }=2
s^3andL{t^3 }=(3)(2)
s^4=3!
s^4. These
results can be extended tonbeing any positive
integer.ThusL{tn}=n!
sn+^1provideds>0)(g) f(t)=sinhat. From Chapter 5,sinhat=1
2(eat−e−at). Hence,L{sinhat}=L{
1
2eat−1
2e−at}=1
2L{eat}−1
2L{e−at}from equations (2) and (3),=1
2[
1
s−a]
−1
2[
1
s+a]from (c) above,=1
2[
1
s−a−1
s+a]=a
s^2 −a^2(provideds>a)A list of elementary standard Laplace transforms are
summarized in Table 64.1.Table 64.1 Elementary standard Laplace transformsFunction Laplace transforms
f(t) L{f(t)}=∫∞
0 e−stf(t)dt(i) 11
s(ii) kk
s(iii) eat1
s−a
(iv) sinata
s^2 +a^2
(v) cosats
s^2 +a^2(vi) t1
s^2(vii) t^22!
s^3(viii) tn(n=1, 2, 3,...)n!
sn+^1
(ix) coshats
s^2 −a^2
(x) sinhata
s^2 −a^2