INTRODUCTION TO LAPLACE TRANSFORMS 629K
64.5 Worked problems on standard
Laplace transforms
Problem 1. Using a standard list of
Laplace transforms determine the following:(a)L{
1 + 2 t−1
3t^4}
(b)L{5e^2 t−3e−t}.(a)L{
1 + 2 t−1
3t^4}=L{ 1 }+ 2 L{t}−1
3L{t^4 },from equations (2) and (3)=1
s+ 2(
1
s^2)
−1
3(
4!
s^4 +^1)
,from (i), (vi) and (viii) of Table 64.1=1
s+2
s^2−1
3(
4. 3. 2. 1
s^5)=1
s+2
s^2−8
s^5(b) L{5e^2 t−3e−t}= 5 L(e^2 t)− 3 L{e−t},from equations (2) and (3)= 5(
1
s− 2)
− 3(
1
s−(−1))
,from (iii) of Table 64.1=5
s− 2−3
s+ 1=5(s+1)−3(s−2)
(s−2)(s+1)=2 s+ 11
s^2 −s− 2Problem 2. Find the Laplace transforms of:
(a) 6 sin 3t−4 cos 5t (b) 2 cosh 2θ−sinh 3θ.(a)L{6 sin 3t−4 cos 5t}
= 6 L{sin 3t}− 4 L{cos 5t}= 6(
3
s^2 + 32)
− 4(
s
s^2 + 52)
,from (iv) and (v) of Table 64.1=18
s^2 + 9−4 s
s^2 + 25(b)L{2 cosh 2θ−sinh 3θ}
= 2 L{cosh 2θ}−L{sinh 3θ}= 2(
s
s^2 − 22)
−(
3
s^2 − 32)from (ix) and (x) of Table 64.1=2 s
s^2 − 4−3
s^2 − 9Problem 3. Prove that(a)L{sinat}=a
s^2 +a^2(b)L{t^2 }=2
s^3(c)L{coshat}=s
s^2 −a^2.(a) From equation (1),L{sinat}=∫∞0e−stsinatdt=[
e−st
s^2 +a^2(−ssinat−acosat)]∞0
by integration by parts,=1
s^2 +a^2[e−s(∞)(−ssina(∞)−acosa(∞))−e^0 (−ssin 0
−acos 0)]=1
s^2 +a^2[(0)−1(0−a)]=a
s^2 +a^2(provideds>0)(b) From equation (1),L{t^2 }=∫∞0e−stt^2 dt=[
t^2 e−st
−s−2 te−st
s^2−2e−st
s^3]∞0
by integration by parts twice,