INTRODUCTION TO LAPLACE TRANSFORMS 629
K
64.5 Worked problems on standard
Laplace transforms
Problem 1. Using a standard list of
Laplace transforms determine the following:
(a)L
{
1 + 2 t−
1
3
t^4
}
(b)L{5e^2 t−3e−t}.
(a)L
{
1 + 2 t−
1
3
t^4
}
=L{ 1 }+ 2 L{t}−
1
3
L{t^4 },
from equations (2) and (3)
=
1
s
+ 2
(
1
s^2
)
−
1
3
(
4!
s^4 +^1
)
,
from (i), (vi) and (viii) of Table 64.1
=
1
s
+
2
s^2
−
1
3
(
4. 3. 2. 1
s^5
)
=
1
s
+
2
s^2
−
8
s^5
(b) L{5e^2 t−3e−t}= 5 L(e^2 t)− 3 L{e−t},
from equations (2) and (3)
= 5
(
1
s− 2
)
− 3
(
1
s−(−1)
)
,
from (iii) of Table 64.1
=
5
s− 2
−
3
s+ 1
=
5(s+1)−3(s−2)
(s−2)(s+1)
=
2 s+ 11
s^2 −s− 2
Problem 2. Find the Laplace transforms of:
(a) 6 sin 3t−4 cos 5t (b) 2 cosh 2θ−sinh 3θ.
(a)L{6 sin 3t−4 cos 5t}
= 6 L{sin 3t}− 4 L{cos 5t}
= 6
(
3
s^2 + 32
)
− 4
(
s
s^2 + 52
)
,
from (iv) and (v) of Table 64.1
=
18
s^2 + 9
−
4 s
s^2 + 25
(b)L{2 cosh 2θ−sinh 3θ}
= 2 L{cosh 2θ}−L{sinh 3θ}
= 2
(
s
s^2 − 22
)
−
(
3
s^2 − 32
)
from (ix) and (x) of Table 64.1
=
2 s
s^2 − 4
−
3
s^2 − 9
Problem 3. Prove that
(a)L{sinat}=
a
s^2 +a^2
(b)L{t^2 }=
2
s^3
(c)L{coshat}=
s
s^2 −a^2
.
(a) From equation (1),
L{sinat}=
∫∞
0
e−stsinatdt
=
[
e−st
s^2 +a^2
(−ssinat−acosat)
]∞
0
by integration by parts,
=
1
s^2 +a^2
[e−s(∞)(−ssina(∞)
−acosa(∞))−e^0 (−ssin 0
−acos 0)]
=
1
s^2 +a^2
[(0)−1(0−a)]
=
a
s^2 +a^2
(provideds>0)
(b) From equation (1),
L{t^2 }=
∫∞
0
e−stt^2 dt
=
[
t^2 e−st
−s
−
2 te−st
s^2
−
2e−st
s^3
]∞
0
by integration by parts twice,