Higher Engineering Mathematics

(Greg DeLong) #1

630 LAPLACE TRANSFORMS


=

[
(0− 0 −0)−

(
0 − 0 −

2
s^3

)]

=

2
s^3

(provideds>0)

(c) From equation (1),


L{coshat}=L

{
1
2

(eat+e−at)

}
,

from Chapter 5

=

1
2

L{eat}+

1
2

L{e−at},

equations (2) and (3)

=

1
2

(
1
s−a

)
+

1
2

(
1
s−(−a)

)

from (iii) of Table 64.1

=

1
2

[
1
s−a

+

1
s+a

]

=

1
2

[
(s+a)+(s−a)
(s−a)(s+a)

]

=

s
s^2 −a^2

(provideds>a)

Problem 4. Determine the Laplace transforms
of: (a) sin^2 t (b) cosh^23 x.

(a) Since cos 2t= 1 −2sin^2 tthen

sin^2 t=

1
2

(1−cos2t). Hence,

L{sin^2 t}=L

{
1
2

(1−cos 2t)

}

=

1
2

L{ 1 }−

1
2

L{cos 2t}

=

1
2

(
1
s

)

1
2

(
s
s^2 + 22

)

from (i) and (v) of Table 64.1

=

(s^2 +4)−s^2
2 s(s^2 +4)

=

4
2 s(s^2 +4)

=

2
s(s^2 +4)

(b) Since cosh 2x=2 cosh^2 x−1 then

cosh^2 x=

1
2

(1+cosh 2x) from Chapter 5.

Hence cosh^23 x=

1
2

(1+cosh 6x)

ThusL{cosh^23 x}=L

{
1
2

(1+cosh 6x)

}

=

1
2

L{ 1 }+

1
2

L{cosh 6x}

=

1
2

(
1
s

)
+

1
2

(
s
s^2 − 62

)

=

2 s^2 − 36
2 s(s^2 −36)

=

s^2 − 18
s(s^2 −36)

Problem 5. Find the Laplace transform of
3 sin (ωt+α), whereωandαare constants.

Using the compound angle formula for sin(A+B),
from Chapter 18, sin(ωt+α) may be expanded to
(sinωtcosα+cosωtsinα). Hence,

L{3sin (ωt+α)}
=L{3(sinωtcosα+cosωtsinα)}

=3 cosαL{sinωt}+3 sinαL{cosωt},

sinceαis a constant

=3 cosα

(
ω
s^2 +ω^2

)
+3 sinα

(
s
s^2 +ω^2

)

from (iv) and (v) of Table 64.1

=

3
(s^2 +ω^2 )

(ωcosα+ssinα)

Now try the following exercise.

Exercise 231 Further problems on an intro-
duction to Laplace transforms

Determine the Laplace transforms in Problems
1to9.


  1. (a) 2t−3 (b) 5t^2 + 4 t− 3
    [
    (a)


2
s^2


3
s

(b)

10
s^3

+

4
s^2


3
s

]


  1. (a)


t^3
24

− 3 t+2 (b)

t^5
15

− 2 t^4 +

t^2
2
[
(a)

1
4 s^4


3
s^2

+

2
s

(b)

8
s^6


48
s^5

+

1
s^3

]
Free download pdf