630 LAPLACE TRANSFORMS
=
[
(0− 0 −0)−
(
0 − 0 −
2
s^3
)]
=
2
s^3
(provideds>0)
(c) From equation (1),
L{coshat}=L
{
1
2
(eat+e−at)
}
,
from Chapter 5
=
1
2
L{eat}+
1
2
L{e−at},
equations (2) and (3)
=
1
2
(
1
s−a
)
+
1
2
(
1
s−(−a)
)
from (iii) of Table 64.1
=
1
2
[
1
s−a
+
1
s+a
]
=
1
2
[
(s+a)+(s−a)
(s−a)(s+a)
]
=
s
s^2 −a^2
(provideds>a)
Problem 4. Determine the Laplace transforms
of: (a) sin^2 t (b) cosh^23 x.
(a) Since cos 2t= 1 −2sin^2 tthen
sin^2 t=
1
2
(1−cos2t). Hence,
L{sin^2 t}=L
{
1
2
(1−cos 2t)
}
=
1
2
L{ 1 }−
1
2
L{cos 2t}
=
1
2
(
1
s
)
−
1
2
(
s
s^2 + 22
)
from (i) and (v) of Table 64.1
=
(s^2 +4)−s^2
2 s(s^2 +4)
=
4
2 s(s^2 +4)
=
2
s(s^2 +4)
(b) Since cosh 2x=2 cosh^2 x−1 then
cosh^2 x=
1
2
(1+cosh 2x) from Chapter 5.
Hence cosh^23 x=
1
2
(1+cosh 6x)
ThusL{cosh^23 x}=L
{
1
2
(1+cosh 6x)
}
=
1
2
L{ 1 }+
1
2
L{cosh 6x}
=
1
2
(
1
s
)
+
1
2
(
s
s^2 − 62
)
=
2 s^2 − 36
2 s(s^2 −36)
=
s^2 − 18
s(s^2 −36)
Problem 5. Find the Laplace transform of
3 sin (ωt+α), whereωandαare constants.
Using the compound angle formula for sin(A+B),
from Chapter 18, sin(ωt+α) may be expanded to
(sinωtcosα+cosωtsinα). Hence,
L{3sin (ωt+α)}
=L{3(sinωtcosα+cosωtsinα)}
=3 cosαL{sinωt}+3 sinαL{cosωt},
sinceαis a constant
=3 cosα
(
ω
s^2 +ω^2
)
+3 sinα
(
s
s^2 +ω^2
)
from (iv) and (v) of Table 64.1
=
3
(s^2 +ω^2 )
(ωcosα+ssinα)
Now try the following exercise.
Exercise 231 Further problems on an intro-
duction to Laplace transforms
Determine the Laplace transforms in Problems
1to9.
- (a) 2t−3 (b) 5t^2 + 4 t− 3
[
(a)
2
s^2
−
3
s
(b)
10
s^3
+
4
s^2
−
3
s
]
- (a)
t^3
24
− 3 t+2 (b)
t^5
15
− 2 t^4 +
t^2
2
[
(a)
1
4 s^4
−
3
s^2
+
2
s
(b)
8
s^6
−
48
s^5
+
1
s^3
]