Higher Engineering Mathematics

(Greg DeLong) #1
INTRODUCTION TO LAPLACE TRANSFORMS 631

K


  1. (a) 5e^3 t(b) 2e−^2 t


[
(a)

5
s− 3

(b)

2
s+ 2

]


  1. (a) 4 sin 3t(b) 3 cos 2t
    [
    (a)


12
s^2 + 9

(b)

3 s
s^2 + 4

]


  1. (a) 7 cosh 2x(b)


1
3

sinh 3t
[
(a)

7 s
s^2 − 4

(b)

1
s^2 − 9

]


  1. (a) 2 cos^2 t (b) 3 sin^22 x
    [
    (a)


2(s^2 +2)
s(s^2 +4)

(b)

24
s(s^2 +16)

]


  1. (a) cosh^2 t(b) 2 sinh^22 θ
    [
    (a)


s^2 − 2
s(s^2 −4)

(b)

16
s(s^2 −16)

]


  1. 4 sin(at+b), whereaandbare constants
    [
    4
    s^2 +a^2


(acosb+ssinb)

]


  1. 3 cos(ωt−α), whereωandαare constants
    [
    3
    s^2 +ω^2


(scosα+ωsinα)

]


  1. Show thatL(cos^23 t−sin^23 t)=


s
s^2 + 36
Free download pdf