Laplace transforms
65
Properties of Laplace transforms
65.1 The Laplace transform of eatf(t)
From Chapter 64, the definition of the Laplace
transform off(t) is:L{f(t)}=∫∞0e−stf(t)dt (1)Thus L{eatf(t)}=∫∞0e−st(eatf(t)) dt=∫∞0e−(s−a)f(t)dt (2)(whereais a real constant)Hence the substitution of (s−a) forsin the trans-
form shown in equation (1) corresponds to the
multiplication of the original functionf(t)byeat.
This is known as a shift theorem.65.2 Laplace transforms of the form
eatf(t)From equation (2), Laplace transforms of the form
eatf(t) may be deduced. For example:
(i)L{eattn}SinceL{tn}=n!
sn+^1from (viii) of Table 64.1,
page 628.thenL{eattn}=n!
(s−a)n+^1from equation (2)above (provideds>a).(ii)L{eatsinωt}Since L{sinωt}=ω
s^2 +ω^2from (iv) ofTable 64.1, page 628.thenL{eatsinωt}=ω
(s−a)^2 +ω^2from equa-tion (2) (provideds>a).(iii)L{eatcoshωt}SinceL{coshωt}=s
s^2 −ω^2from (ix) of
Table 64.1, page 628.thenL{eatcoshωt}=s−a
(s−a)^2 −ω^2from equa-tion (2) (provideds>a).
A summary of Laplace transforms of the form eatf(t)
is shown in Table 65.1.Table 65.1 Laplace transforms of the form eatf(t)Function eatf(t) Laplace transform
(ais a real constant) L{eatf(t)}(i) eattnn!
(s−a)n+^1(ii) eatsinωtω
(s−a)^2 +ω^2(iii) eatcosωts−a
(s−a)^2 +ω^2(iv) eatsinhωtω
(s−a)^2 −ω^2(v) eatcoshωts−a
(s−a)^2 −ω^2Problem 1. Determine (a)L{ 2 t^4 e^3 t}
(b)L{4e^3 tcos 5t}.(a) From (i) of Table 65.1,L{ 2 t^4 e^3 t}= 2 L{t^4 e^3 t}= 2(
4!
(s−3)^4 +^1)=2(4)(3)(2)
(s−3)^5=48
(s−3)^5
(b) From (iii) of Table 65.1,L{4e^3 tcos 5t}= 4 L{e^3 tcos 5t}= 4(
s− 3
(s−3)^2 + 52)