Laplace transforms
65
Properties of Laplace transforms
65.1 The Laplace transform of eatf(t)
From Chapter 64, the definition of the Laplace
transform off(t) is:
L{f(t)}=
∫∞
0
e−stf(t)dt (1)
Thus L{eatf(t)}=
∫∞
0
e−st(eatf(t)) dt
=
∫∞
0
e−(s−a)f(t)dt (2)
(whereais a real constant)
Hence the substitution of (s−a) forsin the trans-
form shown in equation (1) corresponds to the
multiplication of the original functionf(t)byeat.
This is known as a shift theorem.
65.2 Laplace transforms of the form
eatf(t)
From equation (2), Laplace transforms of the form
eatf(t) may be deduced. For example:
(i)L{eattn}
SinceL{tn}=
n!
sn+^1
from (viii) of Table 64.1,
page 628.
thenL{eattn}=
n!
(s−a)n+^1
from equation (2)
above (provideds>a).
(ii)L{eatsinωt}
Since L{sinωt}=
ω
s^2 +ω^2
from (iv) of
Table 64.1, page 628.
thenL{eatsinωt}=
ω
(s−a)^2 +ω^2
from equa-
tion (2) (provideds>a).
(iii)L{eatcoshωt}
SinceL{coshωt}=
s
s^2 −ω^2
from (ix) of
Table 64.1, page 628.
thenL{eatcoshωt}=
s−a
(s−a)^2 −ω^2
from equa-
tion (2) (provideds>a).
A summary of Laplace transforms of the form eatf(t)
is shown in Table 65.1.
Table 65.1 Laplace transforms of the form eatf(t)
Function eatf(t) Laplace transform
(ais a real constant) L{eatf(t)}
(i) eattn
n!
(s−a)n+^1
(ii) eatsinωt
ω
(s−a)^2 +ω^2
(iii) eatcosωt
s−a
(s−a)^2 +ω^2
(iv) eatsinhωt
ω
(s−a)^2 −ω^2
(v) eatcoshωt
s−a
(s−a)^2 −ω^2
Problem 1. Determine (a)L{ 2 t^4 e^3 t}
(b)L{4e^3 tcos 5t}.
(a) From (i) of Table 65.1,
L{ 2 t^4 e^3 t}= 2 L{t^4 e^3 t}= 2
(
4!
(s−3)^4 +^1
)
=
2(4)(3)(2)
(s−3)^5
=
48
(s−3)^5
(b) From (iii) of Table 65.1,
L{4e^3 tcos 5t}= 4 L{e^3 tcos 5t}
= 4
(
s− 3
(s−3)^2 + 52
)