Higher Engineering Mathematics

(Greg DeLong) #1

Laplace transforms


65


Properties of Laplace transforms


65.1 The Laplace transform of eatf(t)


From Chapter 64, the definition of the Laplace
transform off(t) is:

L{f(t)}=

∫∞

0

e−stf(t)dt (1)

Thus L{eatf(t)}=

∫∞

0

e−st(eatf(t)) dt

=

∫∞

0

e−(s−a)f(t)dt (2)

(whereais a real constant)

Hence the substitution of (s−a) forsin the trans-
form shown in equation (1) corresponds to the
multiplication of the original functionf(t)byeat.
This is known as a shift theorem.

65.2 Laplace transforms of the form
eatf(t)

From equation (2), Laplace transforms of the form
eatf(t) may be deduced. For example:
(i)L{eattn}

SinceL{tn}=

n!
sn+^1

from (viii) of Table 64.1,
page 628.

thenL{eattn}=

n!
(s−a)n+^1

from equation (2)

above (provideds>a).

(ii)L{eatsinωt}

Since L{sinωt}=

ω
s^2 +ω^2

from (iv) of

Table 64.1, page 628.

thenL{eatsinωt}=

ω
(s−a)^2 +ω^2

from equa-

tion (2) (provideds>a).

(iii)L{eatcoshωt}

SinceL{coshωt}=

s
s^2 −ω^2

from (ix) of
Table 64.1, page 628.

thenL{eatcoshωt}=

s−a
(s−a)^2 −ω^2

from equa-

tion (2) (provideds>a).
A summary of Laplace transforms of the form eatf(t)
is shown in Table 65.1.

Table 65.1 Laplace transforms of the form eatf(t)

Function eatf(t) Laplace transform
(ais a real constant) L{eatf(t)}

(i) eattn

n!
(s−a)n+^1

(ii) eatsinωt

ω
(s−a)^2 +ω^2

(iii) eatcosωt

s−a
(s−a)^2 +ω^2

(iv) eatsinhωt

ω
(s−a)^2 −ω^2

(v) eatcoshωt

s−a
(s−a)^2 −ω^2

Problem 1. Determine (a)L{ 2 t^4 e^3 t}
(b)L{4e^3 tcos 5t}.

(a) From (i) of Table 65.1,

L{ 2 t^4 e^3 t}= 2 L{t^4 e^3 t}= 2

(
4!
(s−3)^4 +^1

)

=

2(4)(3)(2)
(s−3)^5

=

48
(s−3)^5
(b) From (iii) of Table 65.1,

L{4e^3 tcos 5t}= 4 L{e^3 tcos 5t}

= 4

(
s− 3
(s−3)^2 + 52

)
Free download pdf