Higher Engineering Mathematics

(Greg DeLong) #1
PROPERTIES OF LAPLACE TRANSFORMS 633

K

=

4(s−3)
s^2 − 6 s+ 9 + 25

=

4(s−3)
s^2 − 6 s+ 34

Problem 2. Determine (a)L{e−^2 tsin 3t}
(b)L{3eθcosh 4θ}.

(a) From (ii) of Table 65.1,

L{e−^2 tsin 3t}=

3
(s−(−2))^2 + 32

=

3
(s+2)^2 + 9

=

3
s^2 + 4 s+ 4 + 9

=

3
s^2 + 4 s+ 13

(b) From (v) of Table 65.1,


L{3eθcosh 4θ}= 3 L{eθcosh 4θ}=

3(s−1)
(s−1)^2 − 42

=

3(s−1)
s^2 − 2 s+ 1 − 16

=

3 (s− 1 )
s^2 − 2 s− 15

Problem 3. Determine the Laplace transforms
of (a) 5e−^3 tsinh 2t(b) 2e^3 t(4 cos 2t−5 sin 2t).

(a) From (iv) of Table 65.1,

L{5e−^3 tsinh 2t}= 5 L{e−^3 tsinh 2t}

= 5

(
2
(s−(−3))^2 − 22

)

=

10
(s+3)^2 − 22

=

10
s^2 + 6 s+ 9 − 4

=

10
s^2 + 6 s+ 5

(b) L{2e^3 t(4 cos 2t−5 sin 2t)}


= 8 L{e^3 tcos 2t}− 10 L{e^3 tsin 2t}

=

8(s−3)
(s−3)^2 + 22


10(2)
(s−3)^2 + 22

from (iii) and (ii) of Table 65.1

=

8(s−3)−10(2)
(s−3)^2 + 22

=

8 s− 44
s^2 − 6 s+ 13

Problem 4. Show that

L

{
3e−

1
2 xsin^2 x

}

=

48
(2s+1)(4s^2 + 4 s+17)

.

Since cos 2x= 1 −2 sin^2 x, sin^2 x=

1
2

(1−cos 2x).

Hence,

L

{
3e−

1
2 xsin^2 x

}

=L

{
3e−

1
2 x

1
2

(1−cos 2x)

}

=

3
2

L

{
e−

1
2 x

}

3
2

L

{
e−

1
2 xcos 2x

}

=

3
2





1

s−

(

1
2

)




⎠−

3
2






(
s−

(

1
2

))

(
s−

(

1
2

)) 2
+ 22






from (iii) of Table 64.1 (page 628) and (iii)

of Table 65.1 above,

=

3

2

(
s+

1
2

)−

3

(
s+

1
2

)

2

[(

s+

1
2

) 2
+ 22

]

=

3
2 s+ 1


6 s+ 3

4

(
s^2 +s+

1
4

+ 4

)

=

3
2 s+ 1


6 s+ 3
4 s^2 + 4 s+ 17

=

3(4s^2 + 4 s+17)−(6s+3)(2s+1)
(2s+1)(4s^2 + 4 s+17)

=

12 s^2 + 12 s+ 51 − 12 s^2 − 6 s− 6 s− 3
(2s+1)(4s^2 + 4 s+17)

=

48
(2s+1)(4s^2 + 4 s+17)
Free download pdf