PROPERTIES OF LAPLACE TRANSFORMS 633K
=4(s−3)
s^2 − 6 s+ 9 + 25=4(s−3)
s^2 − 6 s+ 34Problem 2. Determine (a)L{e−^2 tsin 3t}
(b)L{3eθcosh 4θ}.(a) From (ii) of Table 65.1,L{e−^2 tsin 3t}=3
(s−(−2))^2 + 32=3
(s+2)^2 + 9=3
s^2 + 4 s+ 4 + 9=3
s^2 + 4 s+ 13(b) From (v) of Table 65.1,
L{3eθcosh 4θ}= 3 L{eθcosh 4θ}=3(s−1)
(s−1)^2 − 42=3(s−1)
s^2 − 2 s+ 1 − 16=3 (s− 1 )
s^2 − 2 s− 15Problem 3. Determine the Laplace transforms
of (a) 5e−^3 tsinh 2t(b) 2e^3 t(4 cos 2t−5 sin 2t).(a) From (iv) of Table 65.1,L{5e−^3 tsinh 2t}= 5 L{e−^3 tsinh 2t}= 5(
2
(s−(−3))^2 − 22)=10
(s+3)^2 − 22=10
s^2 + 6 s+ 9 − 4=10
s^2 + 6 s+ 5(b) L{2e^3 t(4 cos 2t−5 sin 2t)}
= 8 L{e^3 tcos 2t}− 10 L{e^3 tsin 2t}=8(s−3)
(s−3)^2 + 22−10(2)
(s−3)^2 + 22from (iii) and (ii) of Table 65.1=8(s−3)−10(2)
(s−3)^2 + 22=8 s− 44
s^2 − 6 s+ 13Problem 4. Show thatL{
3e−1
2 xsin^2 x}=48
(2s+1)(4s^2 + 4 s+17).Since cos 2x= 1 −2 sin^2 x, sin^2 x=1
2(1−cos 2x).Hence,L{
3e−1
2 xsin^2 x}=L{
3e−1
2 x1
2(1−cos 2x)}=3
2L{
e−1
2 x}
−3
2L{
e−1
2 xcos 2x}=3
2⎛⎜
⎜
⎝1s−(
−1
2)⎞⎟
⎟
⎠−3
2⎛⎜
⎜
⎜
⎝(
s−(
−1
2))(
s−(
−1
2)) 2
+ 22⎞⎟
⎟
⎟
⎠from (iii) of Table 64.1 (page 628) and (iii)of Table 65.1 above,=32(
s+1
2)−3(
s+1
2)2[(s+1
2) 2
+ 22]=3
2 s+ 1−6 s+ 34(
s^2 +s+1
4+ 4)=3
2 s+ 1−6 s+ 3
4 s^2 + 4 s+ 17=3(4s^2 + 4 s+17)−(6s+3)(2s+1)
(2s+1)(4s^2 + 4 s+17)=12 s^2 + 12 s+ 51 − 12 s^2 − 6 s− 6 s− 3
(2s+1)(4s^2 + 4 s+17)=48
(2s+1)(4s^2 + 4 s+17)