PROPERTIES OF LAPLACE TRANSFORMS 633
K
=
4(s−3)
s^2 − 6 s+ 9 + 25
=
4(s−3)
s^2 − 6 s+ 34
Problem 2. Determine (a)L{e−^2 tsin 3t}
(b)L{3eθcosh 4θ}.
(a) From (ii) of Table 65.1,
L{e−^2 tsin 3t}=
3
(s−(−2))^2 + 32
=
3
(s+2)^2 + 9
=
3
s^2 + 4 s+ 4 + 9
=
3
s^2 + 4 s+ 13
(b) From (v) of Table 65.1,
L{3eθcosh 4θ}= 3 L{eθcosh 4θ}=
3(s−1)
(s−1)^2 − 42
=
3(s−1)
s^2 − 2 s+ 1 − 16
=
3 (s− 1 )
s^2 − 2 s− 15
Problem 3. Determine the Laplace transforms
of (a) 5e−^3 tsinh 2t(b) 2e^3 t(4 cos 2t−5 sin 2t).
(a) From (iv) of Table 65.1,
L{5e−^3 tsinh 2t}= 5 L{e−^3 tsinh 2t}
= 5
(
2
(s−(−3))^2 − 22
)
=
10
(s+3)^2 − 22
=
10
s^2 + 6 s+ 9 − 4
=
10
s^2 + 6 s+ 5
(b) L{2e^3 t(4 cos 2t−5 sin 2t)}
= 8 L{e^3 tcos 2t}− 10 L{e^3 tsin 2t}
=
8(s−3)
(s−3)^2 + 22
−
10(2)
(s−3)^2 + 22
from (iii) and (ii) of Table 65.1
=
8(s−3)−10(2)
(s−3)^2 + 22
=
8 s− 44
s^2 − 6 s+ 13
Problem 4. Show that
L
{
3e−
1
2 xsin^2 x
}
=
48
(2s+1)(4s^2 + 4 s+17)
.
Since cos 2x= 1 −2 sin^2 x, sin^2 x=
1
2
(1−cos 2x).
Hence,
L
{
3e−
1
2 xsin^2 x
}
=L
{
3e−
1
2 x
1
2
(1−cos 2x)
}
=
3
2
L
{
e−
1
2 x
}
−
3
2
L
{
e−
1
2 xcos 2x
}
=
3
2
⎛
⎜
⎜
⎝
1
s−
(
−
1
2
)
⎞
⎟
⎟
⎠−
3
2
⎛
⎜
⎜
⎜
⎝
(
s−
(
−
1
2
))
(
s−
(
−
1
2
)) 2
+ 22
⎞
⎟
⎟
⎟
⎠
from (iii) of Table 64.1 (page 628) and (iii)
of Table 65.1 above,
=
3
2
(
s+
1
2
)−
3
(
s+
1
2
)
2
[(
s+
1
2
) 2
+ 22
]
=
3
2 s+ 1
−
6 s+ 3
4
(
s^2 +s+
1
4
+ 4
)
=
3
2 s+ 1
−
6 s+ 3
4 s^2 + 4 s+ 17
=
3(4s^2 + 4 s+17)−(6s+3)(2s+1)
(2s+1)(4s^2 + 4 s+17)
=
12 s^2 + 12 s+ 51 − 12 s^2 − 6 s− 6 s− 3
(2s+1)(4s^2 + 4 s+17)
=
48
(2s+1)(4s^2 + 4 s+17)