Laplace transforms
66
Inverse Laplace transforms
66.1 Definition of the inverse Laplace
transform
If the Laplace transform of a functionf(t)isF(s),
i.e.L{f(t)}=F(s), thenf(t) is called theinverse
Laplace transform of F(s) and is written as
f(t)=L−^1 {F(s)}.
For example, sinceL{ 1 }=
1
s
thenL−^1
{
1
s
}
= 1.
Similarly, sinceL{sinat}=
a
s^2 +a^2
then
L−^1
{
a
s^2 +a^2
}
=sinat, and so on.
66.2 Inverse Laplace transforms of
simple functions
Tables of Laplace transforms, such as the tables in
Chapters 64 and 65 (see pages 628 and 632) may be
used to find inverse Laplace transforms.
However, for convenience, a summary of inverse
Laplace transforms is shown in Table 66.1.
Problem 1. Find the following inverse Laplace
transforms:
(a)L−^1
{
1
s^2 + 9
}
(b)L−^1
{
5
3 s− 1
}
(a) From (iv) of Table 66.1,
L−^1
{
a
s^2 +a^2
}
=sinat,
HenceL−^1
{
1
s^2 + 9
}
=L−^1
{
1
s^2 + 32
}
=
1
3
L−^1
{
3
s^2 + 32
}
=
1
3
sin 3t
Table 66.1 Inverse Laplace transforms
F(s)=L{f(t)} L−^1 {F(s)}=f(t)
(i)
1
s
1
(ii)
k
s
k
(iii)
1
s−a
eat
(iv) a
s^2 +a^2
sinat
(v)
s
s^2 +a^2
cosat
(vi)
1
s^2
t
(vii)
2!
s^3
t^2
(viii)
n!
sn+^1
tn
(ix)
a
s^2 −a^2
sinhat
(x)
s
s^2 −a^2
coshat
(xi)
n!
(s−a)n+^1
eattn
(xii)
ω
(s−a)^2 +ω^2
eatsinωt
(xiii)
s−a
(s−a)^2 +ω^2
eatcosωt
(xiv)
ω
(s−a)^2 −ω^2
eatsinhωt
(xv)
s−a
(s−a)^2 −ω^2
eatcoshωt
(b) L−^1
{
5
3 s− 1
}
=L−^1
⎧
⎪⎪
⎨
⎪⎪
⎩
5
3
(
s−
1
3
)
⎫
⎪⎪
⎬
⎪⎪
⎭
=
5
3
L−^1
⎧
⎪⎪
⎨
⎪⎪
⎩
1
(
s−
1
3
)
⎫
⎪⎪
⎬
⎪⎪
⎭
=
5
3
e
1
3 t
from (iii) of Table 66.1