Higher Engineering Mathematics

(Greg DeLong) #1
48 NUMBER AND ALGEBRA

(b) Wheny= 54 .30, 54. 30 =40 ch

x
40

, from which

ch

x
40

=

54. 30
40

= 1. 3575

Following the above procedure:

(i)

e

x

(^40) +e
−x
40
2
= 1. 3575
(ii) e
x
(^40) +e
−x
(^40) = 2 .715, i.e. e
x
(^40) +e
−x
(^40) − 2. 715 = 0
(iii) (e
x
(^40) )^2 + 1 − 2 .715e
x
(^40) = 0
i.e. (e
x
(^40) )^2 − 2 .715e
x
(^40) + 1 = 0
(iv) e
x
(^40) =
−(− 2 .715)±

[(− 2 .715)^2 −4(1)(1)]
2(1)




  1. 715 ±

    (3.3712)
    2




  2. 715 ± 1. 8361
    2
    Hence e
    x
    (^40) = 2 .2756 or 0.43945
    (v)
    x
    40
    =ln 2.2756 or
    x
    40
    =ln(0.43945)
    Hence
    x
    40
    = 0 .8222 or
    x
    40
    =−0.8222
    Hencex=40(0.8222) orx=40(−0.8222);
    i.e.x=±32.89, correct to 4 significant figures.
    Now try the following exercise.
    Exercise 26 Further problems on hyper-
    bolic equations
    In Problems 1 to 5 solve the given equations
    correct to 4 decimal places.




  3. shx= 1 [0.8814]




  4. 2 chx=3[±0.9624]




  5. 3.5shx+ 2 .5chx=0[−0.8959]




  6. 2 shx+3chx= 5 [0.6389 or−2.2484]




  7. 4 thx− 1 = 0 [0.2554]




  8. A chain hangs so that its shape is of the form
    y=56 ch (x/56). Determine, correct to 4 sig-
    nificant figures, (a) the value ofywhenxis
    35, and (b) the value ofxwhen[ yis 62.35.
    (a) 67. 30
    (b) 26. 42




]

5.5 Series expansions for coshxand
sinhx

By definition,

ex= 1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+···

from Chapter 4.
Replacingxby−xgives:

e−x= 1 −x+

x^2
2!


x^3
3!

+

x^4
4!


x^5
5!

+···.

coshx=

1
2

(ex+e−x)

=

1
2

[(

1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+···

)

+

(

1 −x+

x^2
2!


x^3
3!

+

x^4
4!


x^5
5!

+···

)]

=

1
2

[(
2 +

2 x^2
2!

+

2 x^4
4!

+···

)]

i.e.coshx= 1 +

x^2
2!

+

x^4
4!

+···(which is valid for
all values ofx). coshxis an even function and
contains only even powers ofxin its expansion

sinhx=

1
2

(ex−e−x)

=

1
2

[(

1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+···

)


(

1 −x+

x^2
2!


x^3
3!

+

x^4
4!


x^5
5!

+···

)]

=

1
2

[

2 x+

2 x^3
3!

+

2 x^5
5!

+ ···

]

i.e.sinhx=x+

x^3
3!

+

x^5
5!

+···(which is valid for
all values ofx). sinhxis an odd function and contains
only odd powers ofxin its series expansion

Problem 15. Using the series expansion for
chxevaluate ch 1 correct to 4 decimal place.

chx= 1 +

x^2
2!

+

x^4
4!

+ ···from above
Free download pdf