48 NUMBER AND ALGEBRA
(b) Wheny= 54 .30, 54. 30 =40 ch
x
40
, from which
ch
x
40
=
54. 30
40
= 1. 3575
Following the above procedure:
(i)
e
x
(^40) +e
−x
40
2
= 1. 3575
(ii) e
x
(^40) +e
−x
(^40) = 2 .715, i.e. e
x
(^40) +e
−x
(^40) − 2. 715 = 0
(iii) (e
x
(^40) )^2 + 1 − 2 .715e
x
(^40) = 0
i.e. (e
x
(^40) )^2 − 2 .715e
x
(^40) + 1 = 0
(iv) e
x
(^40) =
−(− 2 .715)±
√
[(− 2 .715)^2 −4(1)(1)]
2(1)
715 ±
√
(3.3712)
2
715 ± 1. 8361
2
Hence e
x
(^40) = 2 .2756 or 0.43945
(v)
x
40
=ln 2.2756 or
x
40
=ln(0.43945)
Hence
x
40
= 0 .8222 or
x
40
=−0.8222
Hencex=40(0.8222) orx=40(−0.8222);
i.e.x=±32.89, correct to 4 significant figures.
Now try the following exercise.
Exercise 26 Further problems on hyper-
bolic equations
In Problems 1 to 5 solve the given equations
correct to 4 decimal places.
shx= 1 [0.8814]
2 chx=3[±0.9624]
3.5shx+ 2 .5chx=0[−0.8959]
2 shx+3chx= 5 [0.6389 or−2.2484]
4 thx− 1 = 0 [0.2554]
A chain hangs so that its shape is of the form
y=56 ch (x/56). Determine, correct to 4 sig-
nificant figures, (a) the value ofywhenxis
35, and (b) the value ofxwhen[ yis 62.35.
(a) 67. 30
(b) 26. 42
]
5.5 Series expansions for coshxand
sinhx
By definition,
ex= 1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+
x^5
5!
+···
from Chapter 4.
Replacingxby−xgives:
e−x= 1 −x+
x^2
2!
−
x^3
3!
+
x^4
4!
−
x^5
5!
+···.
coshx=
1
2
(ex+e−x)
=
1
2
[(
1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+
x^5
5!
+···
)
+
(
1 −x+
x^2
2!
−
x^3
3!
+
x^4
4!
−
x^5
5!
+···
)]
=
1
2
[(
2 +
2 x^2
2!
+
2 x^4
4!
+···
)]
i.e.coshx= 1 +
x^2
2!
+
x^4
4!
+···(which is valid for
all values ofx). coshxis an even function and
contains only even powers ofxin its expansion
sinhx=
1
2
(ex−e−x)
=
1
2
[(
1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+
x^5
5!
+···
)
−
(
1 −x+
x^2
2!
−
x^3
3!
+
x^4
4!
−
x^5
5!
+···
)]
=
1
2
[
2 x+
2 x^3
3!
+
2 x^5
5!
+ ···
]
i.e.sinhx=x+
x^3
3!
+
x^5
5!
+···(which is valid for
all values ofx). sinhxis an odd function and contains
only odd powers ofxin its series expansion
Problem 15. Using the series expansion for
chxevaluate ch 1 correct to 4 decimal place.
chx= 1 +
x^2
2!
+
x^4
4!
+ ···from above