THE SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 651K
and equation (2′) becomes:sL{x}−L{y}=−4
s− 1or−L{y}+sL{x}=−4
s− 1(2′′)(iii) 1×equation (1′′) ands×equation (2′′) gives:
sL{y}+L{x}=1
s(3)−sL{y}+s^2 L{x}=−4 s
s− 1(4)Adding equations (3) and (4) gives:(s^2 +1)L{x}=1
s−4 s
s− 1=(s−1)−s(4s)
s(s−1)=− 4 s^2 +s− 1
s(s−1)from which, L{x}=− 4 s^2 +s− 1
s(s−1)(s^2 +1)(5)Using partial fractions− 4 s^2 +s− 1
s(s−1)(s^2 +1)≡A
s+B
(s−1)+Cs+D
(s^2 +1)=(
A(s−1)(s^2 +1)+Bs(s^2 +1)
+(Cs+D)s(s−1))s(s−1)(s^2 +1)
Hence− 4 s^2 +s− 1 =A(s−1)(s^2 +1)+Bs(s^2 +1)
+(Cs+D)s(s−1)Whens=0, − 1 =−A henceA= 1
Whens=1, − 4 = 2 B henceB=− 2Equatings^3 coefficients:0 =A+B+C hence C= 1
(sinceA=1 andB=−2)
Equatings^2 coefficients:
− 4 =−A+D−C hence D=− 2
(sinceA=1 andC=1)Thus L{x}=− 4 s^2 +s− 1
s(s−1)(s^2 +1)=1
s−2
(s−1)+s− 2
(s^2 +1)
(iv) Hencex=L−^1{
1
s−2
(s−1)+s− 2
(s^2 +1)}=L−^1{
1
s−2
(s−1)+s
(s^2 +1)−2
(s^2 +1)}i.e. x= 1 −2et+cost−2 sint,from Table 66.1, page 638
From the second equation given in the question,
dx
dt−y+4et= 0from which,y=dx
dt+4et=d
dt(1−2et+cost−2 sint)+4et=−2et−sint−2 cost+4eti.e.y=2et−sint−2 cost
[Alternatively, to determine y, return to
equations (1′′) and (2′′)]Problem 2. Solve the following pair of simul-
taneous differential equations3dx
dt− 5dy
dt+ 2 x= 62dy
dt−dx
dt−y=− 1given that att=0,x=8 andy=3.Using the above procedure:(i) 3L{
dx
dt}
− 5 L{
dy
dt}
+ 2 L{x}=L{ 6 } (1)2 L{
dy
dt}
−L{
dx
dt}
−L{y}=L{− 1 } (2)