652 LAPLACE TRANSFORMS
Equation (1) becomes:
3[sL{x}−x(0)]−5[sL{y}−y(0)]+ 2 L{x}=6
s
from equation (3), page 634, and Table 64.1,
page 628.
i.e. 3 sL{x}− 3 x(0)− 5 sL{y}+ 5 y(0)+ 2 L{x}=6
s
i.e. (3s+2)L{x}− 3 x(0)− 5 sL{y}+ 5 y(0)=6
s(1′)Equation (2) becomes:
2[sL{y}−y(0)]−[sL{x}−x(0)]−L{y}=−1
s
from equation (3), page 634, and Table 64.1,
page 628,
i.e. 2 sL{y}− 2 y(0)−sL{x}+x(0)−L{y}=−1
s
i.e. (2s−1)L{y}− 2 y(0)−sL{x}+x(0)=−1
s(2′)(ii)x(0)=8 and y(0)=3, hence equation (1′)
becomes
(3s+2)L{x}−3(8)− 5 sL{y}
+5(3)=6
s(1′′)and equation (2′) becomes
(2s−1)L{y}−2(3)−sL{x}+ 8 =−1
s(2′′)i.e. (3s+2)L{x}− 5 sL{y}=6
s+9(1′′)(3s+2)L{x}− 5 sL{y}=6
s+9( 1 ′′′)−sL{x}+(2s−1)L{y}=−1
s−2( 2 ′′′)⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎬⎪⎪
⎪⎪
⎪⎪
⎪⎭(A)(iii)s×equation (1′′′) and (3s+2)×equation (2′′′)
gives:s(3s+2)L{x}− 5 s^2 L{y}=s(
6
s+ 9)
(3)−s(3s+2)L{x}+(3s+2)(2s−1)L{y}=(3s+2)(
−1
s− 2)
(4)i.e. s(3s+2)L{x}− 5 s^2 L{y}= 6 + 9 s (3′)−s(3s+2)L{x}+(6s^2 +s−2)L{y}=− 6 s−2
s−7(4′)Adding equations (3′) and (4′) gives:(s^2 +s−2)L{y}=− 1 + 3 s−2
s=−s+ 3 s^2 − 2
sfrom which, L{y}=3 s^2 −s− 2
s(s^2 +s−2)
Using partial fractions3 s^2 −s− 2
s(s^2 +s−2)≡A
s+B
(s+2)+C
(s−1)=A(s+2)(s−1)+Bs(s−1)+Cs(s+2)
s(s+2)(s−1)i.e. 3 s^2 −s− 2 =A(s+2)(s−1)
+Bs(s−1)+Cs(s+2)
When s=0,− 2 =− 2 A, hence A= 1When s=1, 0= 3 C, hence C= 0When s=−2, 12= 6 B, hence B= 2Thus L{y}=3 s^2 −s− 2
s(s^2 +s−2)=1
s+2
(s+2)(iv) Hence y=L−^1{
1
s+2
s+ 2}
= 1 +2e−^2 t