652 LAPLACE TRANSFORMS
Equation (1) becomes:
3[sL{x}−x(0)]−5[sL{y}−y(0)]
+ 2 L{x}=
6
s
from equation (3), page 634, and Table 64.1,
page 628.
i.e. 3 sL{x}− 3 x(0)− 5 sL{y}
+ 5 y(0)+ 2 L{x}=
6
s
i.e. (3s+2)L{x}− 3 x(0)− 5 sL{y}
+ 5 y(0)=
6
s
(1′)
Equation (2) becomes:
2[sL{y}−y(0)]−[sL{x}−x(0)]
−L{y}=−
1
s
from equation (3), page 634, and Table 64.1,
page 628,
i.e. 2 sL{y}− 2 y(0)−sL{x}
+x(0)−L{y}=−
1
s
i.e. (2s−1)L{y}− 2 y(0)−sL{x}
+x(0)=−
1
s
(2′)
(ii)x(0)=8 and y(0)=3, hence equation (1′)
becomes
(3s+2)L{x}−3(8)− 5 sL{y}
+5(3)=
6
s
(1′′)
and equation (2′) becomes
(2s−1)L{y}−2(3)−sL{x}
+ 8 =−
1
s
(2′′)
i.e. (3s+2)L{x}− 5 sL{y}=
6
s
+9(1′′)
(3s+2)L{x}− 5 sL{y}
=
6
s
+9( 1 ′′′)
−sL{x}+(2s−1)L{y}
=−
1
s
−2( 2 ′′′)
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎭
(A)
(iii)s×equation (1′′′) and (3s+2)×equation (2′′′)
gives:
s(3s+2)L{x}− 5 s^2 L{y}=s
(
6
s
+ 9
)
(3)
−s(3s+2)L{x}+(3s+2)(2s−1)L{y}
=(3s+2)
(
−
1
s
− 2
)
(4)
i.e. s(3s+2)L{x}− 5 s^2 L{y}= 6 + 9 s (3′)
−s(3s+2)L{x}+(6s^2 +s−2)L{y}
=− 6 s−
2
s
−7(4′)
Adding equations (3′) and (4′) gives:
(s^2 +s−2)L{y}=− 1 + 3 s−
2
s
=
−s+ 3 s^2 − 2
s
from which, L{y}=
3 s^2 −s− 2
s(s^2 +s−2)
Using partial fractions
3 s^2 −s− 2
s(s^2 +s−2)
≡
A
s
+
B
(s+2)
+
C
(s−1)
=
A(s+2)(s−1)+Bs(s−1)+Cs(s+2)
s(s+2)(s−1)
i.e. 3 s^2 −s− 2 =A(s+2)(s−1)
+Bs(s−1)+Cs(s+2)
When s=0,− 2 =− 2 A, hence A= 1
When s=1, 0= 3 C, hence C= 0
When s=−2, 12= 6 B, hence B= 2
Thus L{y}=
3 s^2 −s− 2
s(s^2 +s−2)
=
1
s
+
2
(s+2)
(iv) Hence y=L−^1
{
1
s
+
2
s+ 2
}
= 1 +2e−^2 t