Assign-18-H8152.tex 23/6/2006 15: 17 Page 655
K
Laplace transforms
Assignment 18
This assignment covers the material contained
in Chapters 64 to 68.The marks for each question are shown in
brackets at the end of each question.- Find the Laplace transforms of the following
functions:
(a) 2t^3 − 4 t+ 5 (b) 3e−^2 t−4 sin 2t
(c) 3 cosh 2t (d) 2t^4 e−^3 t
(e) 5e^2 tcos 3t (f) 2e^3 tsinh 4t (16) - Find the inverse Laplace transforms of the fol-
lowing functions:
(a)5
2 s+ 1(b)12
s^5(c)4 s
s^2 + 9(d)5
s^2 − 9(e)3
(s+2)^4(f)s− 4
s^2 − 8 s− 20(g)8
s^2 − 4 s+ 3(17)- Use partial fractions to determine the following:
(a) L−^1{
5 s− 1
s^2 −s− 2}(b) L−^1{
2 s^2 + 11 s− 9
s(s−1)(s+3)}(c) L−^1{
13 −s^2
s(s^2 + 4 s+13)}
(24)- In a galvanometer the deflectionθsatisfies the
differential equation:
d^2 θ
dt^2+ 2dθ
dt+θ= 4Use Laplace transforms to solve the equation forθgiven that whent=0,θ= 0 anddθ
dt= 0
(13)- Solve the following pair of simultaneous differ-
ential equations:
3dx
dt= 3 x+ 2 y2dy
dt+ 3 x= 6 ygiven that whent=0,x=1 andy=3. (20)- Determine the poles and zeros for the trans-
fer function:F(s)=(s+2)(s−3)
(s+3)(s^2 + 2 s+5)and plotthem on a pole-zero diagram. (10)