654 LAPLACE TRANSFORMS
Adding equations (5) and (6) gives:
[(s^2 +1)(s^2 −1)+1]L{x}=(s^2 +1)2s−s
i.e. s^4 L{x}= 2 s^3 +s=s(2s^2 +1)
from which, L{x}=
s(2s^2 +1)
s^4
=
2 s^2 + 1
s^3
=
2 s^2
s^3
+
1
s^3
=
2
s
+
1
s^3
(iv) Hence x=L−^1
{
2
s
+
1
s^3
}
i.e. x= 2 +
1
2
t^2
Returning to equations (3) and (4) to deter-
miney:
1 ×equation (3) and (s^2 −1)×equation (4)
gives:
(s^2 −1)L{x}−L{y}= 2 s (7)
(s^2 −1)L{x}+(s^2 −1)(s^2 +1)L{y}
=−s(s^2 −1) (8)
Equation (7)−equation (8) gives:
[− 1 −(s^2 −1)(s^2 +1)]L{y}
= 2 s+s(s^2 −1)
i.e. −s^4 L{y}=s^3 +s
and L{y}=
s^3 +s
−s^4
=−
1
s
−
1
s^3
from which, y=L−^1
{
−
1
s
−
1
s^3
}
i.e. y=− 1 −
1
2
t^2
Now try the following exercise.
Exercise 239 Further problems on solving
simultaneous differential equations using
Laplace transforms
Solve the following pairs of simultaneous dif-
ferential equations:
1. 2
dx
dt
+
dy
dt
=5et
dy
dt
− 3
dx
dt
= 5
given that whent=0,x=0 andy= 0
[x=et−t−1 andy= 2 t− 3 + 3 et]
2. 2
dy
dt
−y+x+
dx
dt
−5 sint= 0
3
dy
dt
+x−y+ 2
dx
dt
−et= 0
given that att=0,x=0 andy= 0
[
x=5 cost+5 sint−e^2 t−et−3 and
y=e^2 t+ 2 et− 3 −5 sint
]
3.
d^2 x
dt^2
+ 2 x=y
d^2 y
dt^2
+ 2 y=x
given that att=0,x=4,y=2,
dx
dt
= 0
and
dy
dt
= 0
[
x=3 cost+cos (
√
3 t) and
y=3 cost−cos (
√
3 t)
]