Higher Engineering Mathematics

(Greg DeLong) #1

654 LAPLACE TRANSFORMS


Adding equations (5) and (6) gives:

[(s^2 +1)(s^2 −1)+1]L{x}=(s^2 +1)2s−s
i.e. s^4 L{x}= 2 s^3 +s=s(2s^2 +1)

from which, L{x}=

s(2s^2 +1)
s^4

=

2 s^2 + 1
s^3

=

2 s^2
s^3

+

1
s^3

=

2
s

+

1
s^3

(iv) Hence x=L−^1

{
2
s

+

1
s^3

}

i.e. x= 2 +

1
2

t^2

Returning to equations (3) and (4) to deter-
miney:
1 ×equation (3) and (s^2 −1)×equation (4)
gives:

(s^2 −1)L{x}−L{y}= 2 s (7)

(s^2 −1)L{x}+(s^2 −1)(s^2 +1)L{y}
=−s(s^2 −1) (8)
Equation (7)−equation (8) gives:

[− 1 −(s^2 −1)(s^2 +1)]L{y}

= 2 s+s(s^2 −1)

i.e. −s^4 L{y}=s^3 +s

and L{y}=

s^3 +s
−s^4

=−

1
s


1
s^3

from which, y=L−^1

{

1
s


1
s^3

}

i.e. y=− 1 −

1
2

t^2

Now try the following exercise.

Exercise 239 Further problems on solving
simultaneous differential equations using
Laplace transforms

Solve the following pairs of simultaneous dif-
ferential equations:

1. 2

dx
dt

+

dy
dt

=5et

dy
dt

− 3

dx
dt

= 5

given that whent=0,x=0 andy= 0
[x=et−t−1 andy= 2 t− 3 + 3 et]

2. 2

dy
dt

−y+x+

dx
dt

−5 sint= 0

3

dy
dt

+x−y+ 2

dx
dt

−et= 0

given that att=0,x=0 andy= 0
[
x=5 cost+5 sint−e^2 t−et−3 and
y=e^2 t+ 2 et− 3 −5 sint

]

3.

d^2 x
dt^2

+ 2 x=y

d^2 y
dt^2

+ 2 y=x

given that att=0,x=4,y=2,

dx
dt

= 0

and

dy
dt

= 0
[
x=3 cost+cos (


3 t) and
y=3 cost−cos (


3 t)

]
Free download pdf