666 FOURIER SERIES
Hence
π^2
8
= 1 +
1
32
+
1
52
+
1
72
+···
Problem 5. Deduce the Fourier series for the
functionf(θ)=θ^2 in the range 0 to 2π.
f(θ)=θ^2 is shown in Fig. 70.4 in the range 0 to 2π.
The function is not periodic but is constructed out-
side of this range so that it is periodic of period 2π,
as shown by the broken lines.
− 4 π− 2 π 02 π 4 π
4 π^2
f(θ) = θ^2
f(θ)
θ
Figure 70.4
For a Fourier series:
f(x)=a 0 +
∑∞
n= 1
(ancosnx+bnsinnx)
a 0 =
1
2 π
∫ 2 π
0
f(θ)dθ=
1
2 π
∫ 2 π
0
θ^2 dθ
=
1
2 π
[
θ^3
3
] 2 π
0
=
1
2 π
[
8 π^3
3
− 0
]
=
4 π^2
3
an=
1
π
∫ 2 π
0
f(θ) cosnθdθ
=
1
π
∫ 2 π
0
θ^2 cosnθdθ
=
1
π
[
θ^2 sinnθ
n
+
2 θcosnθ
n^2
−
2 sinnθ
n^3
] 2 π
0
by parts
=
1
π
[(
0 +
4 πcos 2πn
n^2
− 0
)
−(0)
]
=
4
n^2
cos 2πn=
4
n^2
whenn=1, 2, 3,···
Hencea 1 =
4
12
,a 2 =
4
22
,a 3 =
4
32
and so on
bn=
1
π
∫ 2 π
0
f(θ) sinnθdθ=
1
π
∫ 2 π
0
θ^2 sinnθdθ
=
1
π
[
−θ^2 cosnθ
n
+
2 θsinnθ
n^2
+
2 cosnθ
n^3
] 2 π
0
by parts
=
1
π
[(
− 4 π^2 cos 2πn
n
+ 0 +
2 cos 2πn
n^3
)
−
(
0 + 0 +
2 cos 0
n^3
)]
=
1
π
[
− 4 π^2
n
+
2
n^3
−
2
n^3
]
=
− 4 π
n
Henceb 1 =
− 4 π
1
,b 2 =
− 4 π
2
,b 3 =
− 4 π
3
, and so on.
Thus f(θ)=θ^2
=
4 π^2
3
+
∑∞
n= 1
(
4
n^2
cosnθ−
4 π
n
sinnθ
)
i.e.θ^2 =
4 π^2
3
+ 4
(
cosθ+
1
22
cos 2θ+
1
32
cos 3θ+···
)
− 4 π
(
sinθ+
1
2
sin 2θ+
1
3
sin 3θ+···
)
for values ofθbetween 0 and 2π.
Problem 6. In the Fourier series of Problem 5,
letθ=πand determine a series for
π^2
12
.
Whenθ=π,f(θ)=π^2
Hence π^2 =
4 π^2
3
+ 4
(
cosπ+
1
4
cos 2π
+
1
9
cos 3π+
1
16
cos 4π+···
)
− 4 π
(
sinπ+
1
2
sin 2π
+
1
3
sin 3π+···
)