Higher Engineering Mathematics

(Greg DeLong) #1
666 FOURIER SERIES

Hence

π^2
8

= 1 +

1
32

+

1
52

+

1
72

+···

Problem 5. Deduce the Fourier series for the
functionf(θ)=θ^2 in the range 0 to 2π.

f(θ)=θ^2 is shown in Fig. 70.4 in the range 0 to 2π.
The function is not periodic but is constructed out-
side of this range so that it is periodic of period 2π,
as shown by the broken lines.


− 4 π− 2 π 02 π 4 π

4 π^2

f(θ) = θ^2

f(θ)

θ

Figure 70.4

For a Fourier series:

f(x)=a 0 +

∑∞

n= 1

(ancosnx+bnsinnx)

a 0 =

1
2 π

∫ 2 π

0

f(θ)dθ=

1
2 π

∫ 2 π

0

θ^2 dθ

=

1
2 π

[
θ^3
3

] 2 π

0

=

1
2 π

[
8 π^3
3

− 0

]
=

4 π^2
3

an=

1
π

∫ 2 π

0

f(θ) cosnθdθ

=

1
π

∫ 2 π

0

θ^2 cosnθdθ

=

1
π

[
θ^2 sinnθ
n

+

2 θcosnθ
n^2


2 sinnθ
n^3

] 2 π

0
by parts

=

1
π

[(
0 +

4 πcos 2πn
n^2

− 0

)
−(0)

]

=

4
n^2

cos 2πn=

4
n^2

whenn=1, 2, 3,···

Hencea 1 =

4
12

,a 2 =

4
22

,a 3 =

4
32

and so on

bn=

1
π

∫ 2 π

0

f(θ) sinnθdθ=

1
π

∫ 2 π

0

θ^2 sinnθdθ

=

1
π

[
−θ^2 cosnθ
n

+

2 θsinnθ
n^2

+

2 cosnθ
n^3

] 2 π

0
by parts

=

1
π

[(
− 4 π^2 cos 2πn
n

+ 0 +

2 cos 2πn
n^3

)


(
0 + 0 +

2 cos 0
n^3

)]

=

1
π

[
− 4 π^2
n

+

2
n^3


2
n^3

]
=

− 4 π
n

Henceb 1 =

− 4 π
1

,b 2 =

− 4 π
2

,b 3 =

− 4 π
3

, and so on.

Thus f(θ)=θ^2

=

4 π^2
3

+

∑∞

n= 1

(
4
n^2

cosnθ−

4 π
n

sinnθ

)

i.e.θ^2 =

4 π^2
3

+ 4

(
cosθ+

1
22

cos 2θ+

1
32

cos 3θ+···

)

− 4 π

(
sinθ+

1
2

sin 2θ+

1
3

sin 3θ+···

)

for values ofθbetween 0 and 2π.

Problem 6. In the Fourier series of Problem 5,

letθ=πand determine a series for

π^2
12

.

Whenθ=π,f(θ)=π^2

Hence π^2 =

4 π^2
3

+ 4

(
cosπ+

1
4

cos 2π

+

1
9

cos 3π+

1
16

cos 4π+···

)

− 4 π

(
sinπ+

1
2

sin 2π

+

1
3

sin 3π+···

)
Free download pdf