Higher Engineering Mathematics

(Greg DeLong) #1
FOURIER SERIES FOR A NON-PERIODIC FUNCTION OVER RANGE 2π 667

L

i.e. π^2 −

4 π^2
3

= 4

(
− 1 +

1
4


1
9

+

1
16

−···

)
− 4 π(0)


π^2
3

= 4

(
− 1 +

1
4


1
9

+

1
16

−···

)

π^2
3

= 4

(
1 −

1
4

+

1
9


1
16

+···

)

Hence


π^2
12

= 1 −

1
4

+

1
9


1
16

+···

or

π^2
12

= 1 −

1
22

+

1
32


1
42

+···

Now try the following exercise.


Exercise 241 Further problems on Fourier
series of non-periodic functions over a range
of 2π


  1. Show that the Fourier series for the func-
    tionf(x)=xover the rangex=0tox= 2 π
    is given by:


f(x)=π− 2

(
sinx+^12 sin 2x

+^13 sin 3x+^14 sin 4x+···

)


  1. Determine the Fourier series for the function
    defined by:


f(t)=

{
1 −t, when−π<t< 0

1 +t, when 0<t<π

Draw a graph of the function within and
outside of the given range.




f(t)=

π
2

+ 1 −

4
π

(
cost+

cos 3t
32

+

cos 5t
52

+···

)






  1. Find the Fourier series for the function
    f(x)=x+⎡πwithin the range−π<x<π.





f(x)=π+ 2

(
sinx−

1
2

sin 2x

+

1
3

sin 3x−···

)






  1. Determine the Fourier series up to and
    including the third harmonic for the
    function defined by:


f(x)=

{
x, when 0<x<π

2 π−x, whenπ<x< 2 π

Sketch a graph of the function within and
outside of the given range, assuming the
period is 2π.




f(x)=

π
2


4
π

(
cosx+

cos 3x
32

+

cos 5x
52

+···

)






  1. Expand the functionf(θ)=θ^2 in a Fourier
    series in the range−π<θ<π.
    Sketch the function within and outside of the
    given range.⎡






f(θ)=

π^2
3

− 4

(
cosθ−

1
22

cos 2θ

+

1
32

cos 3θ−···

)







  1. For the Fourier series obtained in Problem 5,


letθ=πand deduce the series for

∑∞

n= 1

1
n^2
[
1 +

1
22

+

1
32

+

1
42

+

1
52

+··· =

π^2
6

]


  1. Show that the Fourier series for the triangular
    waveform shown in Fig. 70.5 is given by:


y=

8
π^2

(
sinθ−

1
32

sin 3θ+

1
52

sin 5θ


1
72

sin 7θ+···

)

in the range 0 to 2π.

(^0) π 2 π
1
− 1
y
θ
Figure 70.5

Free download pdf