670 FOURIER SERIES
f(x)2− 3 π/2 −π −π/2 0 π/2 π 3 π/2 2 π x− 2Figure 71.1
From para. (a),
a 0 =
1
π∫π0f(x)dx=1
π{∫π/ 202dx+∫ππ/ 2−2dx}=1
π{
[2x]π/ 2
0 +[−^2 x]π
π/ 2}=1
π[(π)+[(− 2 π)−(−π)]= 0an=
2
π∫π0f(x) cosnxdx=2
π{∫π/ 202 cosnxdx+∫ππ/ 2−2 cosnxdx}=4
π{[
sinnx
n]π/ 20+[
−sinnx
n]ππ/ 2}=4
π{(
sin (π/2)n
n− 0)+(
0 −−sin (π/2)n
n)}=4
π(
2 sin (π/2)n
n)
=8
πn(
sinnπ
2)Whennis even,an= 0
Whennis odd,an=8
πnforn=1, 5, 9,...and an=− 8
πnforn=3, 7, 11,...Hencea 1 =8
π,a 3 =− 8
3 π,a 5 =8
5 π, and so on.Hence the Fourier series for the waveform of
Fig. 71.1 is given by:f(x)=8
π(
cosx−1
3cos 3x+1
5cos 5x−1
7cos 7x+···)Problem 2. In the Fourier series of Problem 1
letx=0 and deduce a series forπ/4.Whenx=0,f(x)=2 (from Fig. 71.1).Thus, from the Fourier series,2 =8
π(
cos 0−1
3cos 0+1
5cos 0−1
7cos 0+···)Hence2 π
8= 1 −1
3+1
5−1
7+···i.e.π
4= 1 −1
3+1
5−1
7+···Problem 3. Obtain the Fourier series for the
square wave shown in Fig. 71.2.20− 2−π π 2 π 3 π xf(x)Figure 71.2The square wave shown in Fig. 71.2 is an odd
function since it is symmetrical about the origin.
Hence, from para. (b), the Fourier series is
given by:f(x)=∑∞n= 1bnsinnx