674 FOURIER SERIES
=
6
π
[(
−πcosnπ
n
+
sinnπ
n^2
)
−(0+0)
]
=−
6
n
cosnπ
Whennis odd,bn=
6
n
.
Henceb 1 =
6
1
,b 3 =
6
3
,b 5 =
6
5
and so on.
Whennis even,bn=−
6
n
.
Henceb 2 =−
6
2
,b 4 =−
6
4
,b 6 =−
6
6
and so on.
Hence the half-range Fourier sine series is given by:
f(x)= 3 x= 6
(
sinx−
1
2
sin 2x+
1
3
sin 3x
−
1
4
sin 4x+
1
5
sin 5x−···
)
Problem 8. Expandf(x)=cosxas a half-range
Fourier sine series in the range 0≤x≤π, and
sketch the function within and outside of the
given range.
When a half-range sine series is required then an
odd function is implied, i.e. a function symmetrical
about the origin. A graph ofy=cosxis shown in
Fig. 71.6 in the range 0 toπ. For cosxto be sym-
metrical about the origin the function is as shown
by the broken lines in Fig. 71.6 outside of the given
range.
−π
− 1
0 π
1
2 πx
f(x)
y = cos x
Figure 71.6
From para. (c), for a half-range Fourier sine series:
f(x)=
∑∞
n= 1
bnsinnxdx
bn=
2
π
∫π
0
f(x) sinnxdx
=
2
π
∫π
0
cosxsinnxdx
=
2
π
∫π
0
1
2
[ sin (x+nx)−sin (x−nx)] dx
=
1
π
[
−cos [x(1+n)]
(1+n)
+
cos [x(1−n)]
(1−n)
]π
0
=
1
π
[(
−cos [π(1+n)]
(1+n)
+
cos [π(1−n)]
(1−n)
)
−
(
−cos 0
(1+n)
+
cos 0
(1−n)
)]
Whennis odd,
bn=
1
π
[(
− 1
(1+n)
+
1
(1−n)
)
−
(
− 1
(1+n)
+
1
(1−n)
)]
= 0
Whennis even,
bn=
1
π
[(
1
(1+n)
−
1
(1−n)
)
−
(
− 1
(1+n)
+
1
(1−n)
)]
=
1
π
(
2
(1+n)
−
2
(1−n)
)
=
1
π
(
2(1−n)−2(1+n)
1 −n^2
)
=
1
π
(
− 4 n
1 −n^2
)
=
4 n
π(n^2 −1)
Henceb 2 =
8
3 π
,b 4 =
16
15 π
,b 6 =
24
35 π
and so on.
Hence the half-range Fourier sine series forf(x)in
the range 0 toπis given by:
f(x)=
8
3 π
sin 2x+
16
15 π
sin 4x
+
24
35 π
sin 6x+···