674 FOURIER SERIES=6
π[(
−πcosnπ
n+sinnπ
n^2)
−(0+0)]=−6
ncosnπWhennis odd,bn=
6
n.Henceb 1 =6
1,b 3 =6
3,b 5 =6
5and so on.Whennis even,bn=−
6
n.Henceb 2 =−6
2,b 4 =−6
4,b 6 =−6
6and so on.Hence the half-range Fourier sine series is given by:f(x)= 3 x= 6(
sinx−1
2sin 2x+1
3sin 3x−1
4sin 4x+1
5sin 5x−···)Problem 8. Expandf(x)=cosxas a half-range
Fourier sine series in the range 0≤x≤π, and
sketch the function within and outside of the
given range.When a half-range sine series is required then an
odd function is implied, i.e. a function symmetrical
about the origin. A graph ofy=cosxis shown in
Fig. 71.6 in the range 0 toπ. For cosxto be sym-
metrical about the origin the function is as shown
by the broken lines in Fig. 71.6 outside of the given
range.
−π− 10 π12 πxf(x)
y = cos xFigure 71.6From para. (c), for a half-range Fourier sine series:f(x)=∑∞n= 1bnsinnxdxbn=2
π∫π0f(x) sinnxdx=2
π∫π0cosxsinnxdx=2
π∫π01
2[ sin (x+nx)−sin (x−nx)] dx=1
π[
−cos [x(1+n)]
(1+n)+cos [x(1−n)]
(1−n)]π0=1
π[(
−cos [π(1+n)]
(1+n)+cos [π(1−n)]
(1−n))−(
−cos 0
(1+n)+cos 0
(1−n))]Whennis odd,bn=1
π[(
− 1
(1+n)+1
(1−n))−(
− 1
(1+n)+1
(1−n))]
= 0Whennis even,bn=1
π[(
1
(1+n)−1
(1−n))−(
− 1
(1+n)+1
(1−n))]=1
π(
2
(1+n)−2
(1−n))=1
π(
2(1−n)−2(1+n)
1 −n^2)=1
π(
− 4 n
1 −n^2)
=4 n
π(n^2 −1)Henceb 2 =8
3 π,b 4 =16
15 π,b 6 =24
35 πand so on.Hence the half-range Fourier sine series forf(x)in
the range 0 toπis given by:f(x)=8
3 πsin 2x+16
15 πsin 4x+24
35 πsin 6x+···