Higher Engineering Mathematics

(Greg DeLong) #1
674 FOURIER SERIES

=

6
π

[(
−πcosnπ
n

+

sinnπ
n^2

)
−(0+0)

]

=−

6
n

cosnπ

Whennis odd,bn=


6
n

.

Henceb 1 =

6
1

,b 3 =

6
3

,b 5 =

6
5

and so on.

Whennis even,bn=−


6
n

.

Henceb 2 =−

6
2

,b 4 =−

6
4

,b 6 =−

6
6

and so on.

Hence the half-range Fourier sine series is given by:

f(x)= 3 x= 6

(
sinx−

1
2

sin 2x+

1
3

sin 3x


1
4

sin 4x+

1
5

sin 5x−···

)

Problem 8. Expandf(x)=cosxas a half-range
Fourier sine series in the range 0≤x≤π, and
sketch the function within and outside of the
given range.

When a half-range sine series is required then an
odd function is implied, i.e. a function symmetrical
about the origin. A graph ofy=cosxis shown in
Fig. 71.6 in the range 0 toπ. For cosxto be sym-
metrical about the origin the function is as shown
by the broken lines in Fig. 71.6 outside of the given
range.


−π

− 1

0 π

1

2 πx

f(x)
y = cos x

Figure 71.6

From para. (c), for a half-range Fourier sine series:

f(x)=

∑∞

n= 1

bnsinnxdx

bn=

2
π

∫π

0

f(x) sinnxdx

=

2
π

∫π

0

cosxsinnxdx

=

2
π

∫π

0

1
2

[ sin (x+nx)−sin (x−nx)] dx

=

1
π

[
−cos [x(1+n)]
(1+n)

+

cos [x(1−n)]
(1−n)


0

=

1
π

[(
−cos [π(1+n)]
(1+n)

+

cos [π(1−n)]
(1−n)

)


(
−cos 0
(1+n)

+

cos 0
(1−n)

)]

Whennis odd,

bn=

1
π

[(
− 1
(1+n)

+

1
(1−n)

)


(
− 1
(1+n)

+

1
(1−n)

)]
= 0

Whennis even,

bn=

1
π

[(
1
(1+n)


1
(1−n)

)


(
− 1
(1+n)

+

1
(1−n)

)]

=

1
π

(
2
(1+n)


2
(1−n)

)

=

1
π

(
2(1−n)−2(1+n)
1 −n^2

)

=

1
π

(
− 4 n
1 −n^2

)
=

4 n
π(n^2 −1)

Henceb 2 =

8
3 π

,b 4 =

16
15 π

,b 6 =

24
35 π

and so on.

Hence the half-range Fourier sine series forf(x)in
the range 0 toπis given by:

f(x)=

8
3 π

sin 2x+

16
15 π

sin 4x

+

24
35 π

sin 6x+···
Free download pdf