Higher Engineering Mathematics

(Greg DeLong) #1
FOURIER SERIES OVER ANY RANGE 677

L

v(t)

10

− 8 − 4 0 4 8 12 t (ms)

Period L = 8 ms

Figure 72.1


a 0 =

1
L

∫ L
2
−L
2

v(t)dt=

1
8

∫ 4

− 4

v(t)dt

=

1
8

{∫ 0

− 4

0dt+

∫ 4

0

10 dt

}
=

1
8

[10t]^40 = 5

an=

2
L

∫ L
2
−L
2

v(t) cos

(
2 πnt
L

)
dt

=

2
8

∫ 4

− 4

v(t) cos

(
2 πnt
8

)
dt

=

1
4

{∫ 0

− 4

0 cos

(
πnt
4

)
dt

+

∫ 4

0

10 cos

(
πnt
4

)
dt

}

=

1
4





10 sin

(
πnt
4

)

(πn

4

)





4

0

=

10
πn

[ sinπn−sin 0]

=0 forn=1, 2, 3,...

bn=

2
L

∫ L
2
−L
2

v(t) sin

(
2 πnt
L

)
dt

=

2
8

∫ 4

− 4

v(t) sin

(
2 πnt
8

)
dt

=

1
4

{∫ 0

− 4

0 sin

(
πnt
4

)
dt

+

∫ 4

0

10 sin

(
πnt
4

)
dt

}

=

1
4





−10 cos

(
πnt
4

)

(πn

4

)





4

0

=

− 10
πn

[cosπn−cos 0]

Whennis even,bn= 0

Whennis odd,b 1 =

− 10
π

(− 1 −1)=

20
π

,

b 3 =

− 10
3 π

(− 1 −1)=

20
3 π

,

b 5 =

20
5 π

, and so on.

Thus the Fourier series for the functionv(t)is
given by:

v(t)= 5 +

20
π

[
sin

(
πt
4

)
+

1
3

sin

(
3 πt
4

)

+

1
5

sin

(
5 πt
4

)
+ ···

]

Problem 2. Obtain the Fourier series for the
function defined by:

f(x)=




0, when − 2 <x<− 1
5, when − 1 <x< 1
0, when 1 <x< 2

The function is periodic outside of this range of
period 4.

The functionf(x) is shown in Fig. 72.2 where period,
L=4. Since the function is symmetrical about the
f(x) axis it is an even function and the Fourier series
contains no sine terms (i.e.bn=0).

− 4 − 3 − 2 − 1012345

L = 4

f(x)
5

− 5 x

Figure 72.2

Thus, from para. (c),

f(x)=a 0 +

∑∞

n= 1

ancos

(
2 πnx
L

)

a 0 =

1
L

∫L
2
−L
2

f(x)dx=

1
4

∫ 2

− 2

f(x)dx
Free download pdf