FOURIER SERIES OVER ANY RANGE 677
L
v(t)
10
− 8 − 4 0 4 8 12 t (ms)
Period L = 8 ms
Figure 72.1
a 0 =
1
L
∫ L
2
−L
2
v(t)dt=
1
8
∫ 4
− 4
v(t)dt
=
1
8
{∫ 0
− 4
0dt+
∫ 4
0
10 dt
}
=
1
8
[10t]^40 = 5
an=
2
L
∫ L
2
−L
2
v(t) cos
(
2 πnt
L
)
dt
=
2
8
∫ 4
− 4
v(t) cos
(
2 πnt
8
)
dt
=
1
4
{∫ 0
− 4
0 cos
(
πnt
4
)
dt
+
∫ 4
0
10 cos
(
πnt
4
)
dt
}
=
1
4
⎡
⎢
⎢
⎣
10 sin
(
πnt
4
)
(πn
4
)
⎤
⎥
⎥
⎦
4
0
=
10
πn
[ sinπn−sin 0]
=0 forn=1, 2, 3,...
bn=
2
L
∫ L
2
−L
2
v(t) sin
(
2 πnt
L
)
dt
=
2
8
∫ 4
− 4
v(t) sin
(
2 πnt
8
)
dt
=
1
4
{∫ 0
− 4
0 sin
(
πnt
4
)
dt
+
∫ 4
0
10 sin
(
πnt
4
)
dt
}
=
1
4
⎡
⎢
⎢
⎣
−10 cos
(
πnt
4
)
(πn
4
)
⎤
⎥
⎥
⎦
4
0
=
− 10
πn
[cosπn−cos 0]
Whennis even,bn= 0
Whennis odd,b 1 =
− 10
π
(− 1 −1)=
20
π
,
b 3 =
− 10
3 π
(− 1 −1)=
20
3 π
,
b 5 =
20
5 π
, and so on.
Thus the Fourier series for the functionv(t)is
given by:
v(t)= 5 +
20
π
[
sin
(
πt
4
)
+
1
3
sin
(
3 πt
4
)
+
1
5
sin
(
5 πt
4
)
+ ···
]
Problem 2. Obtain the Fourier series for the
function defined by:
f(x)=
⎧
⎨
⎩
0, when − 2 <x<− 1
5, when − 1 <x< 1
0, when 1 <x< 2
The function is periodic outside of this range of
period 4.
The functionf(x) is shown in Fig. 72.2 where period,
L=4. Since the function is symmetrical about the
f(x) axis it is an even function and the Fourier series
contains no sine terms (i.e.bn=0).
− 4 − 3 − 2 − 1012345
L = 4
f(x)
5
− 5 x
Figure 72.2
Thus, from para. (c),
f(x)=a 0 +
∑∞
n= 1
ancos
(
2 πnx
L
)
a 0 =
1
L
∫L
2
−L
2
f(x)dx=
1
4
∫ 2
− 2
f(x)dx