678 FOURIER SERIES
=
1
4
{∫− 1
− 2
0dx+
∫ 1
− 1
5dx+
∫ 2
1
0dx
}
=
1
4
[5x]^1 − 1 =
1
4
[(5)−(−5)]=
10
4
=
5
2
an=
2
L
∫L
2
−L
2
f(x) cos
(
2 πnx
L
)
dx
=
2
4
∫ 2
− 2
f(x) cos
(
2 πnx
4
)
dx
=
1
2
{∫− 1
− 2
0 cos
(πnx
2
)
dx
+
∫ 1
− 1
5 cos
(πnx
2
)
dx
+
∫ 2
1
0 cos
(πnx
2
)
dx
}
=
5
2
⎡
⎢
⎣
sin
πnx
2
πn
2
⎤
⎥
⎦
1
− 1
=
5
πn
[
sin
(πn
2
)
−sin
(
−πn
2
)]
Whennis even,an= 0
Whennis odd,
a 1 =
5
π
(1−(−1))=
10
π
a 3 =
5
3 π
(− 1 −1)=
− 10
3 π
a 5 =
5
5 π
(1−(−1))=
10
5 π
and so on.
Hence the Fourier series for the functionf(x)is
given by:
f(x)=
5
2
+
10
π
[
cos
(πx
2
)
−
1
3
cos
(
3 πx
2
)
+
1
5
cos
(
5 πx
2
)
−
1
7
cos
(
7 πx
2
)
+ ···
]
Problem 3. Determine the Fourier series for
the functionf(t)=tin the ranget=0tot=3.
The functionf(t)=tin the interval 0 to 3 is shown
in Fig. 72.3. Although the function is not periodic
it may be constructed outside of this range so that
Period L = 3
− 3 0 3 6 t
f(t)
f(t) = t
Figure 72.3
it is periodic of period 3, as shown by the broken
lines in Fig. 72.3. From para. (c), the Fourier series
is given by:
f(t)=a 0 +
∑∞
n= 1
[
ancos
(
2 πnt
L
)
+bnsin
(
2 πnt
L
)]
a 0 =
1
L
∫L 2
−L
2
f(t)dx=
1
L
∫L
0
f(t)dx
=
1
3
∫ 3
0
tdt=
1
3
[
t^2
2
] 3
0
=
3
2
an =
2
L
∫L
2
−L
2
f(t) cos
(
2 πnt
L
)
dt
=
2
L
∫L
0
tcos
(
2 πnt
L
)
dt
=
2
3
∫ 3
0
tcos
(
2 πnt
3
)
dt
=
2
3
⎡
⎢
⎢
⎢
⎣
tsin
(
2 πnt
3
)
(
2 πn
3
) +
cos
(
2 πnt
3
)
(
2 πn
3
) 2
⎤
⎥
⎥
⎥
⎦
3
0
by parts
=
2
3
⎡
⎢
⎢
⎢
⎣
⎧
⎪⎪
⎪⎨
⎪⎪
⎪⎩
3 sin 2πn
(
2 πn
3
) +
cos 2πn
(
2 πn
3
) 2
⎫
⎪⎪
⎪⎬
⎪⎪
⎪⎭
−
⎧
⎪⎪
⎪⎨
⎪⎪
⎪⎩
0 +
cos 0
(
2 πn
3
) 2
⎫
⎪⎪
⎪⎬
⎪⎪
⎪⎭
⎤
⎥
⎥
⎥
⎦
= 0