Higher Engineering Mathematics

(Greg DeLong) #1
678 FOURIER SERIES

=

1
4

{∫− 1

− 2

0dx+

∫ 1

− 1

5dx+

∫ 2

1

0dx

}

=

1
4

[5x]^1 − 1 =

1
4

[(5)−(−5)]=

10
4

=

5
2

an=

2
L

∫L
2
−L
2

f(x) cos

(
2 πnx
L

)
dx

=

2
4

∫ 2

− 2

f(x) cos

(
2 πnx
4

)
dx

=

1
2

{∫− 1

− 2

0 cos

(πnx

2

)
dx

+

∫ 1

− 1

5 cos

(πnx

2

)
dx

+

∫ 2

1

0 cos

(πnx

2

)
dx

}

=

5
2




sin

πnx
2
πn
2




1

− 1

=

5
πn

[
sin

(πn

2

)
−sin

(
−πn
2

)]

Whennis even,an= 0
Whennis odd,


a 1 =

5
π

(1−(−1))=

10
π

a 3 =

5
3 π

(− 1 −1)=

− 10
3 π

a 5 =

5
5 π

(1−(−1))=

10
5 π

and so on.

Hence the Fourier series for the functionf(x)is
given by:

f(x)=

5
2

+

10
π

[
cos

(πx

2

)

1
3

cos

(
3 πx
2

)

+

1
5

cos

(
5 πx
2

)

1
7

cos

(
7 πx
2

)
+ ···

]

Problem 3. Determine the Fourier series for
the functionf(t)=tin the ranget=0tot=3.

The functionf(t)=tin the interval 0 to 3 is shown
in Fig. 72.3. Although the function is not periodic
it may be constructed outside of this range so that


Period L = 3

− 3 0 3 6 t

f(t)
f(t) = t

Figure 72.3

it is periodic of period 3, as shown by the broken
lines in Fig. 72.3. From para. (c), the Fourier series
is given by:

f(t)=a 0 +

∑∞

n= 1

[
ancos

(
2 πnt
L

)

+bnsin

(
2 πnt
L

)]

a 0 =

1
L

∫L 2

−L
2

f(t)dx=

1
L

∫L

0

f(t)dx

=

1
3

∫ 3

0

tdt=

1
3

[
t^2
2

] 3

0

=

3
2

an =

2
L

∫L
2
−L
2

f(t) cos

(
2 πnt
L

)
dt

=

2
L

∫L

0

tcos

(
2 πnt
L

)
dt

=

2
3

∫ 3

0

tcos

(
2 πnt
3

)
dt

=

2
3






tsin

(
2 πnt
3

)

(
2 πn
3

) +

cos

(
2 πnt
3

)

(
2 πn
3

) 2






3

0
by parts

=

2
3







⎪⎪
⎪⎨

⎪⎪
⎪⎩

3 sin 2πn
(
2 πn
3

) +

cos 2πn
(
2 πn
3

) 2


⎪⎪
⎪⎬

⎪⎪
⎪⎭



⎪⎪
⎪⎨

⎪⎪
⎪⎩

0 +

cos 0
(
2 πn
3

) 2


⎪⎪
⎪⎬

⎪⎪
⎪⎭






= 0
Free download pdf