FOURIER SERIES OVER ANY RANGE 681
L
Problem 5. Find the half-range Fourier sine
series for the functionf(x)=xin the range
0 ≤x≤2. Sketch the function within and outside
of the given range.
A half-range Fourier sine series indicates an odd
function. Thus the graph off(x)=xin the range 0
to 2 is shown in Fig. 72.5 and is extended outside of
this range so as to be symmetrical about the origin,
as shown by the broken lines.
24 6
2
− 2
f(x)
f(x) = x
− 4 − 2 0 x
Figure 72.5
From para. (c), for a half-range sine series:
f(x)=
∑∞
n= 1
bnsin
(nπx
L
)
bn=
2
L
∫L
0
f(x) sin
(nπx
L
)
dx
=
2
2
∫ 2
0
xsin
(nπx
L
)
dx
=
⎡
⎢
⎣
−xcos
(nπx
2
)
(nπ
2
) +
sin
(nπx
2
)
(nπ
2
) 2
⎤
⎥
⎦
2
0
=
⎡
⎢
⎣
⎛
⎜
⎝
−2 cosnπ
(nπ
2
) +
sinnπ
(nπ
2
) 2
⎞
⎟
⎠
−
⎛
⎜
⎝^0 +
sin 0
(nπ
2
) 2
⎞
⎟
⎠
⎤
⎥
⎦
=
−2 cosnπ
nπ
2
=
− 4
nπ
cosnπ
Henceb 1 =
− 4
π
(−1)=
4
π
b 2 =
− 4
2 π
(1)=
− 4
2 π
b 3 =
− 4
3 π
(−1)=
4
3 π
and so on.
Thus the half-range Fourier sine series in the range
0to2isgivenby:
f(x)=
4
π
[
sin
(πx
2
)
−
1
2
sin
(
2 πx
2
)
+
1
3
sin
(
3 πx
2
)
−
1
4
sin
(
4 πx
2
)
+···
]
Now try the following exercise.
Exercise 245 Further problems on half-
range Fourier series over rangeL
- Determine the half-range Fourier cosine
series for the functionf(x)=xin the range
0 ≤x≤3. Sketch the function within and
outside of the given range.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=
3
2
−
12
π^2
{
cos
(
πx
3
)
+
1
32
cos
(
3 πx
3
)
+
1
52
cos
(
5 πx
3
)
+···
}
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Find the half-range Fourier sine series
for the function f(x)=x in the range
0 ≤x≤3. Sketch the function within and
outside of the given range.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=
6
π
(
sin
(πx
3
)
−
1
2
sin
(
2 πx
3
)
+
1
3
sin
(
3 πx
3
)
−
1
4
sin
(
4 πx
3
)
+···
)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Determine the half-range Fourier sine series
for the function defined by:
f(t)=
{ t,0<t< 1
(2−t), 1<t< 2