Higher Engineering Mathematics

(Greg DeLong) #1
FOURIER SERIES OVER ANY RANGE 681

L

Problem 5. Find the half-range Fourier sine
series for the functionf(x)=xin the range
0 ≤x≤2. Sketch the function within and outside
of the given range.

A half-range Fourier sine series indicates an odd
function. Thus the graph off(x)=xin the range 0
to 2 is shown in Fig. 72.5 and is extended outside of
this range so as to be symmetrical about the origin,
as shown by the broken lines.


24 6

2

− 2

f(x)
f(x) = x

− 4 − 2 0 x

Figure 72.5


From para. (c), for a half-range sine series:


f(x)=

∑∞

n= 1

bnsin

(nπx

L

)

bn=

2
L

∫L

0

f(x) sin

(nπx

L

)
dx

=

2
2

∫ 2

0

xsin

(nπx

L

)
dx

=




−xcos

(nπx

2

)

(nπ

2

) +

sin

(nπx

2

)

(nπ

2

) 2




2

0

=







−2 cosnπ
(nπ

2

) +

sinnπ
(nπ

2

) 2







⎝^0 +

sin 0
(nπ

2

) 2







=

−2 cosnπ

2

=

− 4

cosnπ

Henceb 1 =

− 4
π

(−1)=

4
π

b 2 =

− 4
2 π

(1)=

− 4
2 π

b 3 =

− 4
3 π

(−1)=

4
3 π

and so on.

Thus the half-range Fourier sine series in the range
0to2isgivenby:

f(x)=

4
π

[
sin

(πx

2

)

1
2

sin

(
2 πx
2

)

+

1
3

sin

(
3 πx
2

)

1
4

sin

(
4 πx
2

)
+···

]

Now try the following exercise.

Exercise 245 Further problems on half-
range Fourier series over rangeL


  1. Determine the half-range Fourier cosine
    series for the functionf(x)=xin the range
    0 ≤x≤3. Sketch the function within and
    outside of the given range.
    ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
    f(x)=


3
2


12
π^2

{
cos

(
πx
3

)

+

1
32

cos

(
3 πx
3

)

+

1
52

cos

(
5 πx
3

)
+···

}

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Find the half-range Fourier sine series
    for the function f(x)=x in the range
    0 ≤x≤3. Sketch the function within and
    outside of the given range.
    ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
    f(x)=


6
π

(
sin

(πx

3

)

1
2

sin

(
2 πx
3

)

+

1
3

sin

(
3 πx
3

)


1
4

sin

(
4 πx
3

)
+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Determine the half-range Fourier sine series
    for the function defined by:


f(t)=

{ t,0<t< 1
(2−t), 1<t< 2
Free download pdf