680 FOURIER SERIES72.2 Half-range Fourier series for
functions defined over rangeL
(a) By making the substitution u=πx
L(see
Section 72.1), the rangex=0tox=Lcorre-
sponds to the rangeu=0tou=π. Hence a
function may be expanded in a series of either
cosine terms or sine terms only, i.e. ahalf-range
Fourier series.
(b) Ahalf-range cosine seriesin the range 0 toL
can be expanded as:wheref(x)=a 0 +∑∞n= 1ancos(nπxL)a 0 =1
L∫L0f(x)dx andan=2
L∫L0f(x) cos(nπxL)
dx(c) Ahalf-range sine seriesin the range 0 toLcan
be expanded as:f(x)=∑∞n= 1bnsin(nπxL)where bn=2
L∫L0f(x) sin(nπxL)
dxProblem 4. Determine the half-range Fourier
cosine series for the functionf(x)=xin the
range 0≤x≤2. Sketch the function within and
outside of the given range.A half-range Fourier cosine series indicates an even
function. Thus the graph off(x)=xin the range 0
to 2 is shown in Fig. 72.4 and is extended outside
of this range so as to be symmetrical about thef(x)
axis as shown by the broken lines.
From para. (b), for a half-range cosine series:
f(x)=a 0 +∑∞n= 1ancos(nπxL)− 4 − 2 0 24 6x2f(x)
f(x) = xFigure 72.4a 0 =1
L∫L0f(x)dx=1
2∫ 20xdx=1
2[
x^2
2] 20= 1an=2
L∫L0f(x) cos(nπxL)
dx=2
2∫ 20xcos(nπx2)
dx=⎡⎢
⎣xsin(nπx2)(nπ2) +cos(nπx2)(nπ2) 2⎤⎥
⎦20=⎡⎢
⎣⎛⎜
⎝2 sinnπ
(nπ2) +cosnπ
(nπ2) 2⎞⎟
⎠−⎛⎜
⎝^0 +cos 0
(nπ2) 2⎞⎟
⎠⎤⎥
⎦=⎡⎢
⎣cosnπ
(nπ2) 2 −1
(nπ2) 2⎤⎥
⎦=(
2
πn) 2
(cosnπ−1)Whennis even,an= 0a 1 =− 8
π^2, a 3 =− 8
π^232, a 5 =− 8
π^252and so on.Hence the half-range Fourier cosine series forf(x)
in the range 0 to 2 is given by:f(x)= 1 −8
π^2[
cos(πx2)
+1
32cos(
3 πx
2)+1
52cos(
5 πx
2)
+ ···]