Higher Engineering Mathematics

(Greg DeLong) #1
680 FOURIER SERIES

72.2 Half-range Fourier series for


functions defined over rangeL


(a) By making the substitution u=

πx
L

(see
Section 72.1), the rangex=0tox=Lcorre-
sponds to the rangeu=0tou=π. Hence a
function may be expanded in a series of either
cosine terms or sine terms only, i.e. ahalf-range
Fourier series.
(b) Ahalf-range cosine seriesin the range 0 toL
can be expanded as:

where

f(x)=a 0 +

∑∞

n= 1

ancos

(nπx

L

)

a 0 =

1
L

∫L

0

f(x)dx and

an=

2
L

∫L

0

f(x) cos

(nπx

L

)
dx

(c) Ahalf-range sine seriesin the range 0 toLcan
be expanded as:

f(x)=

∑∞

n= 1

bnsin

(nπx

L

)

where bn=

2
L

∫L

0

f(x) sin

(nπx

L

)
dx

Problem 4. Determine the half-range Fourier
cosine series for the functionf(x)=xin the
range 0≤x≤2. Sketch the function within and
outside of the given range.

A half-range Fourier cosine series indicates an even
function. Thus the graph off(x)=xin the range 0
to 2 is shown in Fig. 72.4 and is extended outside
of this range so as to be symmetrical about thef(x)
axis as shown by the broken lines.
From para. (b), for a half-range cosine series:


f(x)=a 0 +

∑∞

n= 1

ancos

(nπx

L

)

− 4 − 2 0 24 6x

2

f(x)
f(x) = x

Figure 72.4

a 0 =

1
L

∫L

0

f(x)dx=

1
2

∫ 2

0

xdx

=

1
2

[
x^2
2

] 2

0

= 1

an=

2
L

∫L

0

f(x) cos

(nπx

L

)
dx

=

2
2

∫ 2

0

xcos

(nπx

2

)
dx

=




xsin

(nπx

2

)

(nπ

2

) +

cos

(nπx

2

)

(nπ

2

) 2




2

0

=







2 sinnπ
(nπ

2

) +

cosnπ
(nπ

2

) 2







⎝^0 +

cos 0
(nπ

2

) 2







=




cosnπ
(nπ

2

) 2 −

1
(nπ

2

) 2




=

(
2
πn

) 2
(cosnπ−1)

Whennis even,an= 0

a 1 =

− 8
π^2

, a 3 =

− 8
π^232

, a 5 =

− 8
π^252

and so on.

Hence the half-range Fourier cosine series forf(x)
in the range 0 to 2 is given by:

f(x)= 1 −

8
π^2

[
cos

(πx

2

)
+

1
32

cos

(
3 πx
2

)

+

1
52

cos

(
5 πx
2

)
+ ···

]
Free download pdf