680 FOURIER SERIES
72.2 Half-range Fourier series for
functions defined over rangeL
(a) By making the substitution u=
πx
L
(see
Section 72.1), the rangex=0tox=Lcorre-
sponds to the rangeu=0tou=π. Hence a
function may be expanded in a series of either
cosine terms or sine terms only, i.e. ahalf-range
Fourier series.
(b) Ahalf-range cosine seriesin the range 0 toL
can be expanded as:
where
f(x)=a 0 +
∑∞
n= 1
ancos
(nπx
L
)
a 0 =
1
L
∫L
0
f(x)dx and
an=
2
L
∫L
0
f(x) cos
(nπx
L
)
dx
(c) Ahalf-range sine seriesin the range 0 toLcan
be expanded as:
f(x)=
∑∞
n= 1
bnsin
(nπx
L
)
where bn=
2
L
∫L
0
f(x) sin
(nπx
L
)
dx
Problem 4. Determine the half-range Fourier
cosine series for the functionf(x)=xin the
range 0≤x≤2. Sketch the function within and
outside of the given range.
A half-range Fourier cosine series indicates an even
function. Thus the graph off(x)=xin the range 0
to 2 is shown in Fig. 72.4 and is extended outside
of this range so as to be symmetrical about thef(x)
axis as shown by the broken lines.
From para. (b), for a half-range cosine series:
f(x)=a 0 +
∑∞
n= 1
ancos
(nπx
L
)
− 4 − 2 0 24 6x
2
f(x)
f(x) = x
Figure 72.4
a 0 =
1
L
∫L
0
f(x)dx=
1
2
∫ 2
0
xdx
=
1
2
[
x^2
2
] 2
0
= 1
an=
2
L
∫L
0
f(x) cos
(nπx
L
)
dx
=
2
2
∫ 2
0
xcos
(nπx
2
)
dx
=
⎡
⎢
⎣
xsin
(nπx
2
)
(nπ
2
) +
cos
(nπx
2
)
(nπ
2
) 2
⎤
⎥
⎦
2
0
=
⎡
⎢
⎣
⎛
⎜
⎝
2 sinnπ
(nπ
2
) +
cosnπ
(nπ
2
) 2
⎞
⎟
⎠
−
⎛
⎜
⎝^0 +
cos 0
(nπ
2
) 2
⎞
⎟
⎠
⎤
⎥
⎦
=
⎡
⎢
⎣
cosnπ
(nπ
2
) 2 −
1
(nπ
2
) 2
⎤
⎥
⎦
=
(
2
πn
) 2
(cosnπ−1)
Whennis even,an= 0
a 1 =
− 8
π^2
, a 3 =
− 8
π^232
, a 5 =
− 8
π^252
and so on.
Hence the half-range Fourier cosine series forf(x)
in the range 0 to 2 is given by:
f(x)= 1 −
8
π^2
[
cos
(πx
2
)
+
1
32
cos
(
3 πx
2
)
+
1
52
cos
(
5 πx
2
)
+ ···
]