Higher Engineering Mathematics

(Greg DeLong) #1

682 FOURIER SERIES


⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(t) =

8
π^2

(
sin

(
πt
2

)


1
32

sin

(
3 πt
2

)

+

1
52

sin

(
5 πt
2

)
−···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Show that the half-range Fourier cosine series
    for the functionf(θ)=θ^2 in the range 0 to 4


is given by:

f(θ)=

16
3


64
π^2

(
cos

(
πθ
4

)


1
22

cos

(
2 πθ
4

)

+

1
32

cos

(
3 πθ
4

)
−···

)

Sketch the function within and outside of the
given range.
Free download pdf