FOURIER SERIES OVER ANY RANGE 681L
Problem 5. Find the half-range Fourier sine
series for the functionf(x)=xin the range
0 ≤x≤2. Sketch the function within and outside
of the given range.A half-range Fourier sine series indicates an odd
function. Thus the graph off(x)=xin the range 0
to 2 is shown in Fig. 72.5 and is extended outside of
this range so as to be symmetrical about the origin,
as shown by the broken lines.
24 62− 2f(x)
f(x) = x− 4 − 2 0 xFigure 72.5
From para. (c), for a half-range sine series:
f(x)=∑∞n= 1bnsin(nπxL)bn=2
L∫L0f(x) sin(nπxL)
dx=2
2∫ 20xsin(nπxL)
dx=⎡⎢
⎣−xcos(nπx2)(nπ2) +sin(nπx2)(nπ2) 2⎤⎥
⎦20=⎡⎢
⎣⎛⎜
⎝−2 cosnπ
(nπ2) +sinnπ
(nπ2) 2⎞⎟
⎠−⎛⎜
⎝^0 +sin 0
(nπ2) 2⎞⎟
⎠⎤⎥
⎦=−2 cosnπ
nπ
2=− 4
nπcosnπHenceb 1 =− 4
π(−1)=4
πb 2 =− 4
2 π(1)=− 4
2 πb 3 =− 4
3 π(−1)=4
3 πand so on.Thus the half-range Fourier sine series in the range
0to2isgivenby:f(x)=4
π[
sin(πx2)
−1
2sin(
2 πx
2)+1
3sin(
3 πx
2)
−1
4sin(
4 πx
2)
+···]Now try the following exercise.Exercise 245 Further problems on half-
range Fourier series over rangeL- Determine the half-range Fourier cosine
series for the functionf(x)=xin the range
0 ≤x≤3. Sketch the function within and
outside of the given range.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=
3
2−12
π^2{
cos(
πx
3)+1
32cos(
3 πx
3)+1
52cos(
5 πx
3)
+···}⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Find the half-range Fourier sine series
for the function f(x)=x in the range
0 ≤x≤3. Sketch the function within and
outside of the given range.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=
6
π(
sin(πx3)
−1
2sin(
2 πx
3)+1
3sin(
3 πx
3)−1
4sin(
4 πx
3)
+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Determine the half-range Fourier sine series
for the function defined by:
f(t)={ t,0<t< 1
(2−t), 1<t< 2