694 FOURIER SERIESFrom equation (2),cn=(
cos 2πn−jsin 2πn
−j 2 πn−cos 2πn−jsin 2πn
(−j 2 πn)^2)+1
(−j 2 πn)^2However, cos 2πn=1 and sin 2πn=0 for all posi-
tive and negative integer values ofn.Thus,cn=
1
−j 2 πn−1
(−j 2 πn)^2+1
(−j 2 πn)^2=1
−j 2 πn=1(j)
−j 2 πn(j)i.e. cn=j
2 πn
From equation (13),c 0 =a 0 =1
L∫L
2−L 2f(t)dt=1
L∫L0f(t)dt=1
1∫ 10tdt=[
t^2
2] 10=[
1
2− 0]
=1
2Hence, the complex Fourier series is given by:f(t)=∑∞n=−∞cnej2 πnt
L from equation (11)i.e. f(t)=1
2+∑∞n=−∞j
2 πnej^2 πnt=1
2+j
2 π∑∞n=−∞ej^2 πnt
nProblem 3. Show that the exponential form of
the Fourier series for the waveform described
by:f(x)={
0 when− 4 ≤x≤ 0
10 when 0 ≤x≤ 4and has a period of 8, is given by:f(x)=∑∞n=−∞5 j
nπ(cosnπ− 1 )ejnπx
4From equation (12),cn=1
L∫L
2−L 2f(x)e−j2 πnx
L dx=1
8[∫ 0− 40e−jπnx(^4) dx+
∫ 4
0
10 e−j
πnx
(^4) dx
]
10
8
[
e−j
πnt
4
−jπ 4 n
] 4
0
10
8
(
4
−jπn
)
[
e−jπn− 1
]
5 j
−j^2 πn
(
e−jπn− 1
)
5 j
πn
(
e−jπn− 1
)
From equation (2), e−jθ=cosθ−jsinθ, thus
e−jπn=cosπn−jsinπn=cosπn for all integer
values ofn. Hence,
cn=
5 j
πn
(
e−jπn− 1
)
5 j
πn
(cosnπ− 1 )
From equation (11), the exponential Fourier series
is given by:
f(x)=
∑∞
n=−∞
cnej
2 πnx
L
∑∞
n=−∞
5 j
nπ
(cosnπ−1) ej
nπx
4
Now try the following exercise.
Exercise 248 Further problems on the com-
plex form of a Fourier series
- Determine the complex Fourier series for the
function defined by:
f(t)={
0, when −π≤t≤ 0
2, when 0 ≤t≤π
The function is periodic outside of this range
of period 2π.
[f(t)=∑∞n=−∞j
nπ(cosnπ− 1 )ejnt= 1 −j2
π(
ejt+1
3ej^3 t+1
5ej^5 t+...)+j2
π(
e−jt+1
3e−j^3 t+1
5e−j^5 t+···)]