Higher Engineering Mathematics

(Greg DeLong) #1
THE COMPLEX OR EXPONENTIAL FORM OF A FOURIER SERIES 693

L

=

5
2

+

5
π

(2)

(
ej

πx

(^2) +e−j
πx
2
2
)

5
3 π
(2)
(
ej
3 πx
(^2) +e−j
3 πx
2
2
)




  • 5
    5 π
    (2)
    (
    ej
    5 πx
    (^2) +e−j
    5 πx
    2
    2
    )
    − ···


    5
    2




  • 10
    π
    cos
    (πx
    2
    )

    10
    3 π
    cos
    (
    3 πx
    2
    )




  • 10
    5 π
    cos
    (
    5 πx
    2
    )
    − ···
    (from equation (3))
    i.e.f(x)=
    5
    2




  • 10
    π
    [
    cos
    (πx
    2
    )

    1
    3
    cos
    (
    3 πx
    2
    )




  • 1
    5
    cos
    (
    5 πx
    2
    )
    −···
    ]
    which is the same as obtained on page 678.
    Hence,
    ∑∞
    n=−∞
    5
    πn
    sin

    2
    ej
    πnx
    (^2) is equivalent to
    5
    2




  • 10
    π
    [
    cos
    (πx
    2
    )

    1
    3
    cos
    (
    3 πx
    2
    )




  • 1
    5
    cos
    (
    5 πx
    2
    )
    −···
    ]
    Problem 2. Show that the complex Fourier
    series for the functionf(t)=tin the ranget= 0
    tot=1, and of period 1, may be expressed as:
    f(t)=
    1
    2




  • j
    2 π
    ∑∞
    n=−∞
    ej^2 πnt
    n
    The saw tooth waveform is shown in Figure 74.2.
    From equation (11), the complex Fourier series is
    given by:
    f(t)=
    ∑∞
    n=−∞
    cnej
    2 πnt
    L
    f(t) f(t) =t
    −10 1 2t
    Period L = 1
    Figure 74.2
    and when the period,L=1, then:
    f(t)=
    ∑∞
    n=−∞
    cnej^2 πnt
    where, from equation (12),
    cn=
    1
    L
    ∫L
    2
    −L 2
    f(t)e−j
    2 πnt
    L dt=
    1
    L
    ∫ L
    0
    f(t)e−j
    2 πnt
    L dt
    and whenL=1 andf(t)=t, then:
    cn=
    1
    1
    ∫ 1
    0
    te−j
    2 πnt
    (^1) dt=
    ∫ 1
    0
    te−j^2 πntdt
    Using integration by parts (see Chapter 43), letu=t,
    from which,
    du
    dt
    =1, and dt=du, and
    let dv=e−j^2 πnt, from which,
    v=

    e−j^2 πntdt=
    e−j^2 πnt
    −j 2 πn
    Hence,cn=
    ∫ 1
    0
    te−j^2 πnt=uv−

    vdu


    [
    t
    e−j^2 πnt
    −j 2 πn
    ] 1
    0

    ∫ 1
    0
    e−j^2 πnt
    −j 2 πn
    dt


    [
    t
    e−j^2 πnt
    −j 2 πn

    e−j^2 πnt
    (−j 2 πn)^2
    ] 1
    0


    (
    e−j^2 πn
    −j 2 πn

    e−j^2 πn
    (−j 2 πn)^2
    )

    (
    0 −
    e^0
    (−j 2 πn)^2
    )



Free download pdf