Ess-For-H8152.tex 19/7/2006 18: 2 Page 705
Essential formulae
Number and Algebra
Laws of indices:am×an=am+nam
an=am−n (am)n=amnam
n = n√
am a−n=1
ana^0 = 1Quadratic formula:If ax^2 +bx+c=0 thenx=−b±√
b^2 − 4 ac
2 aFactor theoremIf x=ais a root of the equation f(x)=0, then
(x−a) is a factor off(x).Remainder theoremIf (ax^2 +bx+c) is divided by (x−p), the
remainder will be:ap^2 +bp+c.or if (ax^3 +bx^2 +cx+d) is divided by (x−p), the
remainder will be:ap^3 +bp^2 +cp+d.Partial fractionsProvided that the numeratorf(x) is of less degree
than the relevant denominator, the following iden-
tities are typical examples of the form of partial
fractions used:f(x)
(x+a)(x+b)(x+c)≡A
(x+a)+B
(x+b)+C
(x+c)f(x)
(x+a)^3 (x+b)≡A
(x+a)+B
(x+a)^2+C
(x+a)^3+D
(x+b)f(x)
(ax^2 +bx+c)(x+d)≡Ax+B
(ax^2 +bx+c)+C
(x+d)Definition of a logarithm:Ify=axthenx=logayLaws of logarithms:log (A×B)=logA+logBlog(
A
B)
=logA−logBlogAn=n×logAExponential series:ex= 1 +x+x^2
2!+x^3
3!+···(valid for all values ofx)Hyperbolic functionssinhx=ex−e−x
2cosechx=1
sinhx=2
ex−e−xcoshx=ex+e−x
2sechx=1
coshx=2
ex+e−xtanhx=ex−e−x
ex+e−xcothx=1
tanhx=ex+e−x
ex−e−xcosh^2 x−sinh^2 = 11 −tanh^2 x=sech^2 xcoth^2 x− 1 = cosech^2 x