Higher Engineering Mathematics

(Greg DeLong) #1

Ess-For-H8152.tex 19/7/2006 18: 2 Page 706


706 ESSENTIAL FORMULAE

Arithmetic progression:

Ifa=first term andd=common difference, then
the arithmetic progression is:a,a+d,a+ 2 d,...
Then’th term is:a+(n−1)d

Sum ofnterms,Sn=

n
2

[2a+(n−1)d]

Geometric progression:

Ifa=first term andr=common ratio, then the
geometric progression is:a,ar,ar^2 ,...
Then’th term is:arn−^1

Sum ofnterms,Sn=

a(1−rn)
(1−r)

or

a(rn−1)
(r−1)

If− 1 <r<1,S∞=

a
(1−r)

Binomial series:

(a+b)n=an+nan−^1 b+

n(n−1)
2!

an−^2 b^2

+

n(n−1)(n−2)
3!

an−^3 b^3 +···

(1+x)n= 1 +nx+

n(n−1)
2!

x^2

+

n(n−1)(n−2)
3!

x^3 +···

Maclaurin’s series

f(x)=f(0)+xf′(0)+

x^2
2!

f′′(0)

+

x^3
3!

f′′′(0)+···

Newton Raphson iterative method

Ifr 1 is the approximate value for a real root of the
equationf(x)=0, then a closer approximation to the
root,r 2 , is given by:

r 2 =r 1 −

f(r 1 )
f′(r 1 )

Boolean algebra

Laws and rules of Boolean algebra
Commutative Laws: A+B=B+A
A·B=B·A
Associative Laws: A+B+C=(A+B)+C
A·B·C=(A·B)·C
Distributive Laws: A·(B+C)=A·B+A·C
A+(B·C)=(A+B)·(A+C)
Sum rules: A+A= 1
A+ 1 = 1
A+ 0 =A
A+A=A
Product rules: A·A= 0
A· 0 = 0
A· 1 =A
A·A=A
Absorption rules: A+A·B=A
A·(A+B)=A
A+A·B=A+B
De Morgan’s Laws: A+B=A·B
A·B=A+B

Geometry and Trigonometry


Theorem of Pythagoras:

b^2 =a^2 +c^2

Figure FA1

Identities:

secθ=

1
cosθ

, cosecθ=

1
sinθ

,

cotθ=

1
tanθ

, tanθ=

sinθ
cosθ
cos^2 θ+sin^2 θ= 11 +tan^2 θ=sec^2 θ
cot^2 θ+ 1 =cosec^2 θ
Free download pdf